Question
Mathematics Question on Differential equations
The solution of the differential equation , dxdy=(x−y)2, when y(1)=1, is :
A
loge2−x2−y=2(y−1)
B
loge2−y2−x=x−y
C
−loge1−x+y1+x−y=x+y−2
D
−loge1+x−y1−x+y=2(x−1)
Answer
−loge1+x−y1−x+y=2(x−1)
Explanation
Solution
x−y=t⇒dxdy=1−dxdt ⇒1−dxdt=t2⇒∫1−t2dt=∫1dx ⇒21ℓn(1−t1+t)=x+λ ⇒21ℓn(1−x+y1+x−y)=x+λ given y(1) = 1 ⇒21ℓn(1)=1+λ⇒λ=−1 ⇒ℓn(1−x+y1+x−y)=2(x−1) ⇒−ℓn(1+x−y1−x+y)=2(x−1)