Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of the differential equation , dydx=(xy)2,\frac{dy}{dx} = \left(x-y\right)^{2} , when y(1)=1y(1) = 1, is :

A

loge2y2x=2(y1)\log_{e} \left|\frac{2-y}{2-x}\right| = 2 \left(y-1\right)

B

loge2x2y=xy\log_{e} \left|\frac{2-x}{2-y}\right| = x -y

C

loge1+xy1x+y=x+y2- \log_{e} \left|\frac{1+x-y}{1-x+y}\right| =x + y - 2

D

loge1x+y1+xy=2(x1)- \log_{e} \left| \frac{1 - x + y}{1 + x - y}\right| = 2 (x - 1)

Answer

loge1x+y1+xy=2(x1)- \log_{e} \left| \frac{1 - x + y}{1 + x - y}\right| = 2 (x - 1)

Explanation

Solution

xy=tdydx=1dtdxx-y =t \Rightarrow \frac{dy}{dx} =1 - \frac{dt}{dx} 1dtdx=t2dt1t2=1dx\Rightarrow 1- \frac{dt}{dx} =t^{2} \Rightarrow \int \frac{dt}{1-t^{2}} =\int 1dx 12n(1+t1t)=x+λ\Rightarrow \frac{1}{2} \ell n \left(\frac{1+t}{1-t}\right) =x +\lambda 12n(1+xy1x+y)=x+λ\Rightarrow \frac{1}{2} \ell n \left(\frac{1+x-y}{1-x+y}\right) =x +\lambda given y(1) = 1 12n(1)=1+λλ=1\Rightarrow \frac{1}{2} \ell n\left(1\right) = 1+\lambda \Rightarrow \lambda = - 1 n(1+xy1x+y)=2(x1)\Rightarrow \ell n \left(\frac{1+x-y}{1-x+y}\right) = 2\left(x-1\right) n(1x+y1+xy)=2(x1)\Rightarrow -\ell n \left(\frac{1-x+y}{1+x-y}\right) =2\left(x-1\right)