Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of the differential equation dydx=1x+y2\frac{dy}{dx}=\frac{1}{x+{{y}^{2}}} is

A

y=x22x2+cexy=-{{x}^{2}}-2x-2+c{{e}^{x}}

B

y=x2+2x+2cexy={{x}^{2}}+2x+2-c{{e}^{x}}

C

x=y22y+2ceyx=-{{y}^{2}}-2y+2-c{{e}^{y}}

D

x=y22y2+ceyx=-{{y}^{2}}-2y-2+c{{e}^{y}}

Answer

x=y22y2+ceyx=-{{y}^{2}}-2y-2+c{{e}^{y}}

Explanation

Solution

Given differential equation is dydx=1x+y2\frac{dy}{dx}=\frac{1}{x+{{y}^{2}}} \Rightarrow dxdyx=y2\frac{dx}{dy}-x={{y}^{2}} Here, P=1,Q=y2P=-1,Q={{y}^{2}} If =e1dy=ey={{e}^{\int{-1}\,dy}}={{e}^{-y}} \therefore Solution is xey=eyy2dyx{{e}^{-y}}=\int{{{e}^{-y}}{{y}^{2}}dy} =eyy2+2eyydy=-{{e}^{-y}}{{y}^{2}}+\int{2{{e}^{-y}}ydy} =eyy2+2[eyy+eydy]+c=-{{e}^{-y}}{{y}^{2}}+2[-{{e}^{-y}}y+\int{{{e}^{-y}}dy]}+c =eyy2+2[eyyey]+c=-{{e}^{-y}}{{y}^{2}}+2[-{{e}^{-y}}y-{{e}^{-y}}]+c \Rightarrow xey=ey(y22y2)+cx{{e}^{-y}}={{e}^{-y}}(-{{y}^{2}}-2y-2)+c \Rightarrow x=y22y2+ceyx=-{{y}^{2}}-2y-2+c{{e}^{y}}