Question
Mathematics Question on Differential equations
The solution of the differential equation dydx=sec(yx)+yx is:
A
(A) cos(yx)=log(cx)
B
(B) sin(xy)=log(cx)
C
(C) sin(yx)=log(cx)
D
(D) None of these
Answer
(C) sin(yx)=log(cx)
Explanation
Solution
Explanation:
Given,dydx=sec(yx)+yx……(1) Let,yx=t ⇒y=xtDifferentiating with respect to x, we getdydx=x×dtdx+t×ddxxWe known that:ddxxy=y×ddxx+x×ddxySo,dydx=x×dtdx+tNow, Putting these value in equation (1), we getxdtdx+t=sect+t⇒xdtdx=sect⇒dtsect=dxxIntegrating both sides, we get∫dtsect=∫dxx⇒∫costdt=∫dxx⇒sint=logx+logc⇒sint=log(cx)(∵logm+logn=log(mn))∴sin(yx)=log(cx)Hence, the correct option is (C).