Solveeit Logo

Question

Question: The solution of the differential equation \(\dfrac{{dy}}{{dx}} + \dfrac{y}{2}\sec x = \dfrac{{\tan x...

The solution of the differential equation dydx+y2secx=tanx2y\dfrac{{dy}}{{dx}} + \dfrac{y}{2}\sec x = \dfrac{{\tan x}}{{2y}}, where 0xπ20 \leqslant x \leqslant \dfrac{\pi }{2} and y(0)=1y\left( 0 \right) = 1, is given by:
A. y2=1+xsecx+tanx{y^2} = 1 + \dfrac{x}{{\sec x + \tan x}}
B. y=1+xsecx+tanxy = 1 + \dfrac{x}{{\sec x + \tan x}}
C. y=1xsecx+tanxy = 1 - \dfrac{x}{{\sec x + \tan x}}
D. y2=1xsecx+tanx{y^2} = 1 - \dfrac{x}{{\sec x + \tan x}}

Explanation

Solution

The given equation is a nonlinear differential equation. We will convert it into linear differential equation by dividing the equation by yy. Then, make necessary substitution and compare with the standard linear differential equation. Find the integrating factor and apply initial value to get the value of cc.

Complete step by step solution:
Given differential equation is a nonlinear equation.
dydx+y2secx=tanx2y\dfrac{{dy}}{{dx}} + \dfrac{y}{2}\sec x = \dfrac{{\tan x}}{{2y}}
Divide the equation by yy to convert it into a differential equation.
ydydx+y22secx=tanx2\dfrac{{ydy}}{{dx}} + \dfrac{{{y^2}}}{2}\sec x = \dfrac{{\tan x}}{2}
Let v=y2v = {y^2}, then
dvdx=2ydydx ydydx=12dvdx  \Rightarrow \dfrac{{dv}}{{dx}} = 2y\dfrac{{dy}}{{dx}} \\\ \Rightarrow y\dfrac{{dy}}{{dx}} = \dfrac{1}{2}\dfrac{{dv}}{{dx}} \\\
On substituting the values, we will get,
12dvdx+v2secx=tanx2 dvdx+vsecx=tanx  \dfrac{1}{2}\dfrac{{dv}}{{dx}} + \dfrac{v}{2}\sec x = \dfrac{{\tan x}}{2} \\\ \Rightarrow \dfrac{{dv}}{{dx}} + v\sec x = \tan x \\\
Here, we can observe that the given differential equation is of the type linear in yy
That is the equation dvdx+vsecx=tanx\dfrac{{dv}}{{dx}} + v\sec x = \tan x is of the form dydx+Py=Q\dfrac{{dy}}{{dx}} + Py = Q, where P=secxP = \sec x and Q=tanxQ = \tan x
Then, integrating factor is given by eP(x)dx{e^{\int {P\left( x \right)dx} }} which is IF=esecxdx{\text{IF}} = {e^{\int {\sec xdx} }}
We know that secxdx=lntanx+secx\int {\sec xdx = \ln \left| {\tan x + \sec x} \right|}
This implies, elntanx+secx=tanx+secx{e^{\ln \left| {\tan x + \sec x} \right|}} = \tan x + \sec x
We can solve the value of vv using the formula,
v=1IFIF×Q(x)+cv = \dfrac{1}{{{\text{IF}}}}\int {{\text{IF}} \times Q\left( x \right) + c}
On substituting the values, we will get,
v=1(tanx+secx)tanx(tanx+secx)+cv = \dfrac{1}{{\left( {\tan x + \sec x} \right)}}\int {\tan x\left( {\tan x + \sec x} \right) + c}
Now, we will solve the integration part and then substitute its value.
tanx(tanx+secx)=(tan2x+tanxsecx)dx\int {\tan x\left( {\tan x + \sec x} \right) = \int {\left( {{{\tan }^2}x + \tan x\sec x} \right)dx} }
Also, tan2x=sec2x1{\tan ^2}x = {\sec ^2}x - 1
Then, the value of integral is
(sec2x1+tanxsecx)dx sec2x1dx+tanxsecxdx tanxx+secx  \Rightarrow \int {\left( {{{\sec }^2}x - 1 + \tan x\sec x} \right)dx} \\\ \Rightarrow \int {{{\sec }^2}x - \int {1dx + \int {\tan x\sec xdx} } } \\\ \Rightarrow \tan x - x + \sec x \\\
Hence, the value of vv becomes,
v=tanx+secxx(tanx+secx)+cv = \dfrac{{\tan x + \sec x - x}}{{\left( {\tan x + \sec x} \right)}} + c

Put vy2v - {y^2}
y2=tanx+secxx(tanx+secx)+c y2=1xtanx+secx+c  {y^2} = \dfrac{{\tan x + \sec x - x}}{{\left( {\tan x + \sec x} \right)}} + c \\\ \Rightarrow {y^2} = 1 - \dfrac{x}{{\tan x + \sec x}} + c \\\
Put the initial condition y(0)=1y\left( 0 \right) = 1
1=10+c c=0  1 = 1 - 0 + c \\\ \Rightarrow c = 0 \\\
Therefore,
y2=1xtanx+secx{y^2} = 1 - \dfrac{x}{{\tan x + \sec x}}

Hence, option D is correct.

Note:
The differential equation of the form dydx+yP(x)=ynQ(x)\dfrac{{dy}}{{dx}} + yP\left( x \right) = {y^n}Q\left( x \right) can be converted into linear form by dividing the equation by yn{y^n} and then substituting y1n{y^{1 - n}} and then dividing by 1n1 - n. Also, students must do the integration correctly.