Solveeit Logo

Question

Question: The solution of the differential equation \(\cos y \log ( \sec x + \tan x ) d x = \cos x \log ( \s...

The solution of the differential equation

cosylog(secx+tanx)dx=cosxlog(secy+tany)dy\cos y \log ( \sec x + \tan x ) d x = \cos x \log ( \sec y + \tan y ) d y is

A

sec2x+sec2y=c\sec ^ { 2 } x + \sec ^ { 2 } y = c

B

secx+secy=c\sec x + \sec y = c

C

secxsecy=c\sec x - \sec y = c

D

None of these

Answer

None of these

Explanation

Solution

cosylog(secx+tanx)dx=cosxlog(secy+tany)dy\cos y \log ( \sec x + \tan x ) d x = \cos x \log ( \sec y + \tan y ) d y

secylog(secy+tany)dy\int \sec y \log ( \sec y + \tan y ) d y

=secxlog(secx+tanx)dx= \int \sec x \log ( \sec x + \tan x ) d x

Put log(secx+tanx)=t\log ( \sec x + \tan x ) = tandlog(secy+tany)=z\log ( \sec y + \tan y ) = z

[log(secx+tanx)]22=[log(secy+tany)]22+c\frac { [ \log ( \sec x + \tan x ) ] ^ { 2 } } { 2 } = \frac { [ \log ( \sec y + \tan y ) ] ^ { 2 } } { 2 } + c .