Solveeit Logo

Question

Question: The solution of the differential equation (1 + y<sup>2</sup>) + (x –\(e^{\tan^{- 1}y}\)) \(\frac{dy...

The solution of the differential equation

(1 + y2) + (x –etan1ye^{\tan^{- 1}y}) dydx\frac{dy}{dx}= 0 is –

A

(x – 2) = ketan1ye^{\tan^{- 1}y}

B

2xetan1ye^{\tan^{- 1}y} = e2tan1ye^{2\tan^{- 1}y} + k

C

xetan1ye^{\tan^{- 1}y}= tan–1 y + k

D

xe2tan1xe^{2\tan^{- 1}x}y = etan1ye^{\tan^{- 1}y} + k

Answer

2xetan1ye^{\tan^{- 1}y} = e2tan1ye^{2\tan^{- 1}y} + k

Explanation

Solution

Given (1 + y2) + (x –etan1ye^{\tan^{- 1}y}) (dydx)\left( \frac{dy}{dx} \right) = 0

This can be rewritten as

(1 + y2) dxdy\frac{dx}{dy} + x = etan1ye^{\tan^{- 1}y}

Ž dxdy\frac{dx}{dy} + x(1+y2)\frac{x}{(1 + y^{2})} = etan1y(1+y2)\frac{e^{\tan^{- 1}y}}{(1 + y^{2})}

It is a linear equation, comparing with the standard equation dxdy\frac{dx}{dy} + Px = Q Ž P = 11+y2\frac{1}{1 + y^{2}}, Q = etan1y1+y2\frac{e^{\tan^{- 1}y}}{1 + y^{2}} = epdye^{\int_{}^{}{pdy}}

= e11+y2dye^{\int_{}^{}{\frac{1}{1 + y^{2}}dy}} = etan1ye^{\tan^{- 1}y}

Thus solution is

x(etan1ye^{\tan^{- 1}y})= etan1ye^{\tan^{- 1}y}dy

Put etan1ye^{\tan^{- 1}y} = t Ž etan1y1+y2\frac{e^{\tan^{- 1}y}}{1 + y^{2}}dy = dt

\ x(etan1ye^{\tan^{- 1}y}) = t\int_{}^{}tdt = t22\int_{}^{}\frac{t^{2}}{2} + c = e2tan1y2\frac{e^{2\tan^{- 1}y}}{2} + c

Ž xetan1ye^{\tan^{- 1}y} = e2tan1y2\frac{e^{2\tan^{- 1}y}}{2} + c

Ž 2xetan1ye^{\tan^{- 1}y} = e2tan1ye^{2\tan^{- 1}y} + k