Question
Question: The solution of the differential equation (1 + y<sup>2</sup>) + (x –\(e^{\tan^{- 1}y}\)) \(\frac{dy...
The solution of the differential equation
(1 + y2) + (x –etan−1y) dxdy= 0 is –
A
(x – 2) = ketan−1y
B
2xetan−1y = e2tan−1y + k
C
xetan−1y= tan–1 y + k
D
xe2tan−1xy = etan−1y + k
Answer
2xetan−1y = e2tan−1y + k
Explanation
Solution
Given (1 + y2) + (x –etan−1y) (dxdy) = 0
This can be rewritten as
(1 + y2) dydx + x = etan−1y
Ž dydx + (1+y2)x = (1+y2)etan−1y
It is a linear equation, comparing with the standard equation dydx + Px = Q Ž P = 1+y21, Q = 1+y2etan−1y = e∫pdy
= e∫1+y21dy = etan−1y
Thus solution is
x(etan−1y)= etan−1ydy
Put etan−1y = t Ž 1+y2etan−1ydy = dt
\ x(etan−1y) = ∫tdt = ∫2t2 + c = 2e2tan−1y + c
Ž xetan−1y = 2e2tan−1y + c
Ž 2xetan−1y = e2tan−1y + k