Solveeit Logo

Question

Question: The solution of the differential equation \((1 + y^{2}) + (x–e^{\tan^{–1}y})\frac{dy}{dx}\) = 0 is ...

The solution of the differential equation

(1+y2)+(xetan1y)dydx(1 + y^{2}) + (x–e^{\tan^{–1}y})\frac{dy}{dx} = 0 is –

A

(x2)=ketan1y(x–2) = ke^{\tan^{–1}y}

B

2xetan1y=e2tan1y+k2xe^{\tan^{–1}y} = e^{2\tan^{–1}y} + k

C

xetan1y=tan1y+kxe^{\tan^{–1}y} = \tan^{–1}y + k

D

xe2tan1xy=etan1y+kxe^{2\tan^{–1}x}y = e^{\tan^{–1}y} + k

Answer

2xetan1y=e2tan1y+k2xe^{\tan^{–1}y} = e^{2\tan^{–1}y} + k

Explanation

Solution

dxdy+x1+y2=etan1y1+y2\frac{dx}{dy} + \frac{x}{1 + y^{2}} = \frac{e^{\tan^{–1}y}}{1 + y^{2}} Here

P= 11+y2,θ=etan1y1+y2\frac{1}{1 + y^{2}},\theta = \frac{e^{\tan^{–1}y}}{1 + y^{2}} I.F

= e11+y2dy=etan1ye^{\int_{}^{}{\frac{1}{1 + y^{2}}dy}} = e^{\tan^{–1}y}

Solution is given by

x(etan1y)=(etan1y)21+y2dyx(e^{\tan^{–1}y}) = \int_{}^{}\frac{(e^{\tan^{–1}y})^{2}}{1 + y^{2}}dy

Let tan–1 y = t Ž 11+y2dy=dt\frac{1}{1 + y^{2}}dy = dt

Ž x(etan1y)=e2tan1y2+cx(e^{\tan^{–1}y}) = \frac{e^{2\tan^{–1}y}}{2} + c