Solveeit Logo

Question

Question: The solution of the differential equation \((1 + y^{2}) + (x - e^{\tan^{- 1}y})\frac{dy}{dx} = 0\)i...

The solution of the differential equation

(1+y2)+(xetan1y)dydx=0(1 + y^{2}) + (x - e^{\tan^{- 1}y})\frac{dy}{dx} = 0is

A

(x2)=ketan1y(x - 2) = ke^{\tan^{- 1}y}

B

2xetan1y=e2tan1y+k2xe^{\tan^{- 1}y} = e^{2\tan^{- 1}y} + k

C

xetan1y=tan1y+kxe^{\tan^{- 1}y} = \tan^{- 1}y + k

D

xe2tan1y=etan1y+kxe^{2\tan^{- 1}y} = e^{\tan^{- 1}y} + k

Answer

2xetan1y=e2tan1y+k2xe^{\tan^{- 1}y} = e^{2\tan^{- 1}y} + k

Explanation

Solution

We have (xetan1y)dydx=(1+y2)(x - e^{\tan^{- 1}y})\frac{dy}{dx} = - (1 + y^{2})

dxdy=(xetan1y1+y2)\frac{dx}{dy} = - \left( \frac{x - e^{\tan^{- 1}y}}{1 + y^{2}} \right)

dxdy+11+y2x=etan1y1+y2\frac{dx}{dy} + \frac{1}{1 + y^{2}}x = \frac{e^{\tan^{- 1}y}}{1 + y^{2}} ……..(i)

This is a linear differential equation of the form

dxdy+R(y).x=S(y)\frac{dx}{dy} + R(y).x = S(y)

R=11+y2R = \frac{1}{1 + y^{2}}, S=etan1y1+y2S = \frac{e^{\tan^{- 1}y}}{1 + y^{2}}

Integrating factor=eRdy=edy1+y2=etan1y= e^{\int_{}^{}{Rdy}} = e^{\int_{}^{}\frac{dy}{1 + y^{2}}} = e^{\tan^{- 1}y}

Multiplying (i) by I.F. and integrating,xetan1y=etan1y1+y2etan1ydy=(etan1y)2dy1+y2=(etan1y)22+k2xe^{\tan^{- 1}y} = \int_{}^{}\frac{e^{\tan^{- 1}y}}{1 + y^{2}} \cdot e^{\tan^{- 1}y}dy = \int_{}^{}\frac{(e^{\tan^{- 1}y})^{2}dy}{1 + y^{2}} = \frac{(e^{\tan^{- 1}y})^{2}}{2} + \frac{k}{2}2xetan1y=e2tan1y+k2xe^{\tan^{- 1}y} = e^{2\tan^{- 1}y} + k