Question
Question: The solution of the differential equation \((1 + y^{2}) + (x - e^{\tan^{- 1}y})\frac{dy}{dx} = 0\)i...
The solution of the differential equation
(1+y2)+(x−etan−1y)dxdy=0is
A
(x−2)=ketan−1y
B
2xetan−1y=e2tan−1y+k
C
xetan−1y=tan−1y+k
D
xe2tan−1y=etan−1y+k
Answer
2xetan−1y=e2tan−1y+k
Explanation
Solution
We have (x−etan−1y)dxdy=−(1+y2)
⇒ dydx=−(1+y2x−etan−1y)
⇒ dydx+1+y21x=1+y2etan−1y ……..(i)
This is a linear differential equation of the form
dydx+R(y).x=S(y)
R=1+y21, S=1+y2etan−1y
Integrating factor=e∫Rdy=e∫1+y2dy=etan−1y
Multiplying (i) by I.F. and integrating,xetan−1y=∫1+y2etan−1y⋅etan−1ydy=∫1+y2(etan−1y)2dy=2(etan−1y)2+2k∴ 2xetan−1y=e2tan−1y+k