Solveeit Logo

Question

Question: The solution of the differential equation \((1 + x^{2})\frac{dy}{dx} = x(1 + y^{2})\) is...

The solution of the differential equation (1+x2)dydx=x(1+y2)(1 + x^{2})\frac{dy}{dx} = x(1 + y^{2}) is

A

2tan1y=log(1+x2)+c2\tan^{- 1}y = \log(1 + x^{2}) + c

B

tan1y=log(1+x2)+c\tan^{- 1}y = \log(1 + x^{2}) + c

C

2tan1y+log(1+x2)+c=02\tan^{- 1}y + \log(1 + x^{2}) + c = 0

D

None of these

Answer

2tan1y=log(1+x2)+c2\tan^{- 1}y = \log(1 + x^{2}) + c

Explanation

Solution

Separating the variables, we can re-write the given differential equation as

xdx1+x2=dy1+y2\frac{xdx}{1 + x^{2}} = \frac{dy}{1 + y^{2}}2xdx1+x2=2dy1+y2\int_{}^{}{\frac{2xdx}{1 + x^{2}} = 2\int_{}^{}\frac{dy}{1 + y^{2}}}

2tan1y=loge(1+x2)+c2\tan^{- 1}y = \log_{e}(1 + x^{2}) + c