Question
Question: The solution of the D.E. \[x\cos ydy = (x.{e^x}\log x + {e^x})dx\] is A) \[\sin y = {e^x} + \log x...
The solution of the D.E. xcosydy=(x.exlogx+ex)dx is
A) siny=ex+logx+c
B) siny−ex+logx=c
C) siny=ex(logx)+c
D) None of these
Explanation
Solution
First shift from L.H.S. to R.H.S. because this will take all x terms to one side of the equation and then take excommon. Here function and its derivative are on the same side.
Formula used:
∫cosydy=siny
∫logxdx=x1
Complete step by step answer:
Given that,
xcosydy=(x.exlogx+ex)dx
Shift xof L.H.S. to R.H.S