Question
Mathematics Question on Inverse Trigonometric Functions
The solution of Tan−1x+2cot−1x=32π is
A
31
B
−31
C
3
D
−3
Answer
3
Explanation
Solution
We have, tan−1x+2cot−1x=32π ⇒tan−1x+2tan−1x1=32π ⇒tan−1x+tan−1(1−(x1)22(x1))=32π [∵2tan−1x=tan−11−x22x] ⇒tan−1x+tan−1(x2−12x)=32π ⇒tan−1(1−x2−12x2x+x2−12x)=32π ⇒x2−1−2x2x3−x+2x=tan(32π) ⇒−1−x2x3+x=tan(32π) ⇒−1(x2+1)x(x2+1)=−3x=3