Solveeit Logo

Question

Question: The solution of \(( \operatorname { cosec } x \log y ) d y + \left( x ^ { 2 } y \right) d x = 0\) ...

The solution of (cosecxlogy)dy+(x2y)dx=0( \operatorname { cosec } x \log y ) d y + \left( x ^ { 2 } y \right) d x = 0 is

A

logy2+(2x2)cosx+2sinx=c\frac { \log y } { 2 } + \left( 2 - x ^ { 2 } \right) \cos x + 2 \sin x = c

B

(logy2)2+(2x2)cosx+2xsinx=c\left( \frac { \log y } { 2 } \right) ^ { 2 } + \left( 2 - x ^ { 2 } \right) \cos x + 2 x \sin x = c

C

(logy)22+(2x2)cosx+2xsinx=c\frac { ( \log y ) ^ { 2 } } { 2 } + \left( 2 - x ^ { 2 } \right) \cos x + 2 x \sin x = c

D

None of these

Answer

(logy)22+(2x2)cosx+2xsinx=c\frac { ( \log y ) ^ { 2 } } { 2 } + \left( 2 - x ^ { 2 } \right) \cos x + 2 x \sin x = c

Explanation

Solution

(cosecxlogy)dy+(x2y)dx=0( \operatorname { cosec } x \log y ) d y + \left( x ^ { 2 } y \right) d x = 01ylogydy=x2sinxdx\frac { 1 } { y } \log y d y = - x ^ { 2 } \sin x d x

On integrating both sides, we get

(logy)22+[x2(cosx)+2xcosxdx]=c\frac { ( \log y ) ^ { 2 } } { 2 } + \left[ x ^ { 2 } ( - \cos x ) + \int 2 x \cos x d x \right] = c

(logy)22x2cosx+2(xsinx+cosx)=c\frac { ( \log y ) ^ { 2 } } { 2 } - x ^ { 2 } \cos x + 2 ( x \sin x + \cos x ) = c

(logy)22+(2x2)cosx+2xsinx=c\frac { ( \log y ) ^ { 2 } } { 2 } + \left( 2 - x ^ { 2 } \right) \cos x + 2 x \sin x = c.