Question
Question: The solution of \(( \operatorname { cosec } x \log y ) d y + \left( x ^ { 2 } y \right) d x = 0\) ...
The solution of (cosecxlogy)dy+(x2y)dx=0 is
A
2logy+(2−x2)cosx+2sinx=c
B
(2logy)2+(2−x2)cosx+2xsinx=c
C
2(logy)2+(2−x2)cosx+2xsinx=c
D
None of these
Answer
2(logy)2+(2−x2)cosx+2xsinx=c
Explanation
Solution
(cosecxlogy)dy+(x2y)dx=0⇒ y1logydy=−x2sinxdx
On integrating both sides, we get
2(logy)2+[x2(−cosx)+∫2xcosxdx]=c
⇒ 2(logy)2−x2cosx+2(xsinx+cosx)=c
⇒ 2(logy)2+(2−x2)cosx+2xsinx=c.