Solveeit Logo

Question

Question: The solution of \(\frac { d y } { d x } = \frac { e ^ { x } \left( \sin ^ { 2 } x + \sin 2 x \right)...

The solution of dydx=ex(sin2x+sin2x)y(2logy+1)\frac { d y } { d x } = \frac { e ^ { x } \left( \sin ^ { 2 } x + \sin 2 x \right) } { y ( 2 \log y + 1 ) } is

A

y2(logy)exsin2x+c=0y ^ { 2 } ( \log y ) - e ^ { x } \sin ^ { 2 } x + c = 0

B

y2(logy)excos2x+c=0y ^ { 2 } ( \log y ) - e ^ { x } \cos ^ { 2 } x + c = 0

C

y2(logy)+excos2x+c=0y ^ { 2 } ( \log y ) + e ^ { x } \cos ^ { 2 } x + c = 0

D

None of these

Answer

y2(logy)exsin2x+c=0y ^ { 2 } ( \log y ) - e ^ { x } \sin ^ { 2 } x + c = 0

Explanation

Solution

dydx=ex(sin2x+sin2x)y(2logy+1)\frac { d y } { d x } = \frac { e ^ { x } \left( \sin ^ { 2 } x + \sin 2 x \right) } { y ( 2 \log y + 1 ) }

(2ylogy+y)dy=ex(sin2x+sin2x)dx\int ( 2 y \log y + y ) d y = \int e ^ { x } \left( \sin ^ { 2 } x + \sin 2 x \right) d x

On integrating by parts, we get

y2(logy)=exsin2x+cy ^ { 2 } ( \log y ) = e ^ { x } \sin ^ { 2 } x + c.