Solveeit Logo

Question

Question: The solution of \(\frac { d y } { d x } = \sin ( x + y ) + \cos ( x + y )\)is...

The solution of dydx=sin(x+y)+cos(x+y)\frac { d y } { d x } = \sin ( x + y ) + \cos ( x + y )is

A

log[1+tan(x+y2)]+c=0\log \left[ 1 + \tan \left( \frac { x + y } { 2 } \right) \right] + c = 0

B

log[1+tan(x+y2)]=x+c\log \left[ 1 + \tan \left( \frac { x + y } { 2 } \right) \right] = x + c

C

log[1tan(x+y2)]=x+c\log \left[ 1 - \tan \left( \frac { x + y } { 2 } \right) \right] = x + c

D

None of these

Answer

log[1+tan(x+y2)]=x+c\log \left[ 1 + \tan \left( \frac { x + y } { 2 } \right) \right] = x + c

Explanation

Solution

Put x+y=vx + y = v and 1+dydx=dvdx1 + \frac { d y } { d x } = \frac { d v } { d x }

Therefore, the differential equation reduces to

dvdx=(1+cosv)+sinv\frac { d v } { d x } = ( 1 + \cos v ) + \sin v

sec2(v/2)dv2[1+tan(v/2)]=dx\int \frac { \sec ^ { 2 } ( v / 2 ) d v } { 2 [ 1 + \tan ( v / 2 ) ] } = \int d x

log[1+tan(x+y2)]=x+c\log \left[ 1 + \tan \left( \frac { x + y } { 2 } \right) \right] = x + c.