Solveeit Logo

Question

Question: The solution of \(\frac { d y } { d x } = e ^ { x } ( \sin x + \cos x )\)is...

The solution of dydx=ex(sinx+cosx)\frac { d y } { d x } = e ^ { x } ( \sin x + \cos x )is

A

y=ex(sinxcosx)+cy = e ^ { x } ( \sin x - \cos x ) + c

B

y=ex(cosxsinx)+cy = e ^ { x } ( \cos x - \sin x ) + c

C

y=exsinx+cy = e ^ { x } \sin x + c

D

y=excosx+cy = e ^ { x } \cos x + c

Answer

y=exsinx+cy = e ^ { x } \sin x + c

Explanation

Solution

Given equation

dydx=ex(sinx+cosx)\frac { d y } { d x } = e ^ { x } ( \sin x + \cos x )

dy=ex(sinx+cosx)dxd y = e ^ { x } ( \sin x + \cos x ) d x

On integrating, we get y=exsinx+cy = e ^ { x } \sin x + c.