Solveeit Logo

Question

Question: The solution of \(\frac { d y } { d x } = x \log x\)is...

The solution of dydx=xlogx\frac { d y } { d x } = x \log xis

A

y=x2logxx22+cy = x ^ { 2 } \log x - \frac { x ^ { 2 } } { 2 } + c

B

y=x22logxx2+cy = \frac { x ^ { 2 } } { 2 } \log x - x ^ { 2 } + c

C

y=12x2+12x2logx+cy = \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 2 } x ^ { 2 } \log x + c

D

None of these

Answer

None of these

Explanation

Solution

dydx=xlogx\frac { d y } { d x } = x \log xdy=xlogxdxd y = x \log x d x

dy=xlogxdx\int d y = \int x \log x d xy=x22logxx24+cy = \frac { x ^ { 2 } } { 2 } \log x - \frac { x ^ { 2 } } { 4 } + c.