Solveeit Logo

Question

Question: The solution of \(\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^{2}}(\log z)^{2}\) is...

The solution of dzdx+zxlogz=zx2(logz)2\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^{2}}(\log z)^{2} is

A

(1logz)x=2x2c\left( \frac{1}{\log z} \right)x = 2 - x^{2}c

B

(1logz)x=2+x2c\left( \frac{1}{\log z} \right)x = 2 + x^{2}c

C

(1logz)x=x2c\left( \frac{1}{\log z} \right)x = x^{2}c

D

(1logz)x=12+cx2\left( \frac{1}{\log z} \right)x = \frac{1}{2} + cx^{2}`

Answer

(1logz)x=12+cx2\left( \frac{1}{\log z} \right)x = \frac{1}{2} + cx^{2}`

Explanation

Solution

Dividing the given equation by z(logz)2z(\log z)^{2},

1z(logz)2dzdx+1x1logz=1x2\frac{1}{z(\log z)^{2}}\frac{dz}{dx} + \frac{1}{x}\frac{1}{\log z} = \frac{1}{x^{2}}

Let 1logz=t\frac{1}{\log z} = t1(logz)212dzdx=dtdx- \frac{1}{(\log z)^{2}} \cdot \frac{1}{2}\frac{dz}{dx} = \frac{dt}{dx}

dtdx+tx=1x2- \frac{dt}{dx} + \frac{t}{x} = \frac{1}{x^{2}}

dtdxtx=1x2\frac{dt}{dx} - \frac{t}{x} = - \frac{1}{x^{2}} ……..(i)

I.F.=edxx=elnx=eln1x=1x= e^{\int_{}^{}{- \frac{dx}{x}}} = e^{- \ln x} = e^{\ln\frac{1}{x}} = \frac{1}{x}

Multiplying (i) by 1x\frac{1}{x} and integrating,

tx=1x3dx=12x2+c\frac{t}{x} = \int_{}^{}{- \frac{1}{x^{3}}dx = \frac{1}{2x^{2}} + c}1xlogz=12x2+c\frac{1}{x\log z} = \frac{1}{2x^{2}} + c

(1lnz)x=(12)+cx2\left( \frac{1}{\ln z} \right)x = \left( \frac{1}{2} \right) + cx^{2}