Question
Question: The solution of \(\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^{2}}(\log z)^{2}\) is...
The solution of dxdz+xzlogz=x2z(logz)2 is
A
(logz1)x=2−x2c
B
(logz1)x=2+x2c
C
(logz1)x=x2c
D
(logz1)x=21+cx2`
Answer
(logz1)x=21+cx2`
Explanation
Solution
Dividing the given equation by z(logz)2,
z(logz)21dxdz+x1logz1=x21
Let logz1=t ⇒ −(logz)21⋅21dxdz=dxdt
∴ −dxdt+xt=x21
⇒ dxdt−xt=−x21 ……..(i)
I.F.=e∫−xdx=e−lnx=elnx1=x1
Multiplying (i) by x1 and integrating,
xt=∫−x31dx=2x21+c ⇒ xlogz1=2x21+c
∴ (lnz1)x=(21)+cx2