Question
Question: The solution of \(\frac{dy}{dx} = \frac{y^{3} + 2x^{2}y}{x^{3} + 2xy^{2}}\) is...
The solution of dxdy=x3+2xy2y3+2x2y is
A
(x2−y2)3=Bx2y2
B
(x2+y2)3=Bx2y2
C
(x2−y2)3=x2y2
D
None of these
Answer
(x2−y2)3=Bx2y2
Explanation
Solution
Given equation is homogeneous. Let y = vx
∴ dxdy=v+xdxdv
⇒ x3+2xy2y3+2x2y=v+xdxdv ⇒ 1+2(y/x)2(y/x)3+2(y/x)=v+xdxdv
⇒ 1+2v2v3+2v=v+xdxdv ⇒ xdxdv=v{1+2v2v2+2−1}=v{1+2v21−v2}
⇒ v(1−v2)1+2v2dv=xdx ⇒ v(1−v)(1+v)1+2v2dv=xdx
⇒ (vA+1−vB+1+vD)dv=xdx
where A(1−v)(1+v)+Bv(1+v)+Dv(1−v)=1+2v2Putting
v = 0, A = 1
v = 1, B=23
v = – 1, D=−23
∴ (v1+231−v1−231+v1)dv=xdx
Integrating both side, we get
lnv+23−1ln(1−v)−23ln(1+v)=lnx+lnc
⇒ lnv−23ln(1−v)−23ln(1+v)=lncx ⇒ v/{(1−v)1+v}3/2=cx ⇒ (cxv)2=(1−v2)3 ⇒ (cx2y)2=(1−x2y2)3
⇒ (x2−y2)3=c2x2y2
∴ (x2−y2)3=Bx2y2, (∵c21=B)