Solveeit Logo

Question

Question: The solution of \(\frac{dy}{dx} = \frac{y^{3} + 2x^{2}y}{x^{3} + 2xy^{2}}\) is...

The solution of dydx=y3+2x2yx3+2xy2\frac{dy}{dx} = \frac{y^{3} + 2x^{2}y}{x^{3} + 2xy^{2}} is

A

(x2y2)3=Bx2y2(x^{2} - y^{2})^{3} = Bx^{2}y^{2}

B

(x2+y2)3=Bx2y2(x^{2} + y^{2})^{3} = Bx^{2}y^{2}

C

(x2y2)3=x2y2(x^{2} - y^{2})^{3} = x^{2}y^{2}

D

None of these

Answer

(x2y2)3=Bx2y2(x^{2} - y^{2})^{3} = Bx^{2}y^{2}

Explanation

Solution

Given equation is homogeneous. Let y = vx

dydx=v+xdvdx\frac{dy}{dx} = v + x\frac{dv}{dx}

y3+2x2yx3+2xy2=v+xdvdx\frac{y^{3} + 2x^{2}y}{x^{3} + 2xy^{2}} = v + x\frac{dv}{dx}(y/x)3+2(y/x)1+2(y/x)2=v+xdvdx\frac{(y/x)^{3} + 2(y/x)}{1 + 2(y/x)^{2}} = v + x\frac{dv}{dx}

v3+2v1+2v2=v+xdvdx\frac{v^{3} + 2v}{1 + 2v^{2}} = v + x\frac{dv}{dx}xdvdx=v{v2+21+2v21}=v{1v21+2v2}x\frac{dv}{dx} = v\left\{ \frac{v^{2} + 2}{1 + 2v^{2}} - 1 \right\} = v\left\{ \frac{1 - v^{2}}{1 + 2v^{2}} \right\}

1+2v2v(1v2)dv=dxx\frac{1 + 2v^{2}}{v(1 - v^{2})}dv = \frac{dx}{x}1+2v2v(1v)(1+v)dv=dxx\frac{1 + 2v^{2}}{v(1 - v)(1 + v)}dv = \frac{dx}{x}

(Av+B1v+D1+v)dv=dxx\left( \frac{A}{v} + \frac{B}{1 - v} + \frac{D}{1 + v} \right)dv = \frac{dx}{x}

where A(1v)(1+v)+Bv(1+v)+Dv(1v)=1+2v2A(1 - v)(1 + v) + Bv(1 + v) + Dv(1 - v) = 1 + 2v^{2}Putting

v = 0, A = 1

v = 1, B=32B = \frac{3}{2}

v = – 1, D=32D = - \frac{3}{2}

(1v+3211v3211+v)dv=dxx\left( \frac{1}{v} + \frac{3}{2}\frac{1}{1 - v} - \frac{3}{2}\frac{1}{1 + v} \right)dv = \frac{dx}{x}

Integrating both side, we get

lnv+32ln(1v)132ln(1+v)=lnx+lnc\ln v + \frac{3}{2}\frac{\ln(1 - v)}{- 1} - \frac{3}{2}\ln(1 + v) = \ln x + \ln c

lnv32ln(1v)32ln(1+v)=lncx\ln v - \frac{3}{2}\ln(1 - v) - \frac{3}{2}\ln(1 + v) = \ln cxv/{(1v)1+v}3/2=cxv/\{(1 - v)1 + v\}^{3/2} = cx(vcx)2=(1v2)3\left( \frac{v}{cx} \right)^{2} = (1 - v^{2})^{3}(ycx2)2=(1y2x2)3\left( \frac{y}{cx^{2}} \right)^{2} = \left( 1 - \frac{y^{2}}{x^{2}} \right)^{3}

(x2y2)3=x2y2c2(x^{2} - y^{2})^{3} = \frac{x^{2}y^{2}}{c^{2}}

(x2y2)3=Bx2y2(x^{2} - y^{2})^{3} = Bx^{2}y^{2}, (1c2=B)\left( \because\frac{1}{c^{2}} = B \right)