Question
Question: The solution of \(\frac{dy}{dx} = \frac{x - 3y + 2}{3x - y + 6}\) is...
The solution of dxdy=3x−y+6x−3y+2 is
A
y2+6(x+2)y+(x+2)2=c
B
y2−6(x+2)y+(x+2)2=c
C
y2−6(y+2)x+x2=c
D
None of these
Answer
y2−6(x+2)y+(x+2)2=c
Explanation
Solution
Given equation is non-homogeneous
Let x = X + h, y = Y + k
⇒ dxdy=dXdY
∴ dXdY=3(X+h)−(Y+k)+6(X+h)−3(Y+k)+2=3X−Y+(3h−k+6)X−3Y+(h−3k+2)
Let us select h and k so that h – 3k + 2 = 0 and
3h – k + 6 = 0
Solving, k = 0, h = – 2 ∴ X = x – h = x + 2, Y=y−k=y
∴ dXdY=3X−YX−3Y, which is homogeneous
Now, let Y = vX
⇒ dXdY=v+XdXdv ⇒ 3X−YX−3Y=v+XdXdv
⇒ 3−(Y/X)1−3(Y/X)=v+XdXdv ⇒ 3−v1−3v=v+XdXdv
⇒ XdXdv=3−v1−3v−v=3−vv2−6v+1 ⇒ v2−6v+1(3−v)dv=XdX
⇒ v2−6v+12v−6dv=−2XdX
Integrating, ln(v2−6v+1)=−2lnX+lnc
⇒ ln(v2−6v+1)+lnX2=lnc ⇒ X2(v2−6v+1)=c
⇒ Y2−6XY+X2=c
∴ y2−6(x+2)y+(x+2)2=c