Solveeit Logo

Question

Question: The solution of \(\frac{dy}{dx} = \frac{1}{y^{2} + \sin y}\) is...

The solution of dydx=1y2+siny\frac{dy}{dx} = \frac{1}{y^{2} + \sin y} is

A

x=y33cosy+cx = \frac{y^{3}}{3} - \cos y + c

B

y + cosy = x + c

C

x=y33+cosy+cx = \frac{y^{3}}{3} + \cos y + c

D

None of these

Answer

x=y33cosy+cx = \frac{y^{3}}{3} - \cos y + c

Explanation

Solution

Given equation may be re-written as dx=(y2+siny)dydx = (y^{2} + \sin y)dy

Integrating, dx=(y2+siny)dy\int_{}^{}{dx} = \int_{}^{}{(y^{2} + \sin y)}dy

x=y33cosy+cx = \frac{y^{3}}{3} - \cos y + c