Solveeit Logo

Question

Question: The solution of \(\frac{dy}{dx} + 2y\tan x = \sin x\), is...

The solution of dydx+2ytanx=sinx\frac{dy}{dx} + 2y\tan x = \sin x, is

A

ysec3x=sec2x+cy\sec^{3}x = \sec^{2}x + c

B

ysec2x=secx+cy\sec^{2}x = \sec x + c

C

ysinx=tanx+cy\sin x = \tan x + c

D

None of these

Answer

ysec2x=secx+cy\sec^{2}x = \sec x + c

Explanation

Solution

dydx\frac{dy}{dx} +2y tan x = sin x is a linear differential equation of then form dydx+yƒ(x)=g(x)\frac{dy}{dx} + yƒ(x) = g(x)

\therefore I.F. =

eƒ(x)dx=e2tanxdx=e2log(secx)=elogsec2x=sec2xe^{\int_{}^{}{ƒ(x)dx}} = e^{\int_{}^{}{2\tan xdx}} = e^{2\log(\sec x)} = e^{{logsec}^{2}x} = \sec^{2}xHence, the solution is y(I.F.) = g(x)I.F.dx+c\int_{}^{}{g(x)}I.F.dx + c

y(sec2x)=sinxsec2xdx+cy(\sec^{2}x) = \int_{}^{}{\sin x\sec^{2}xdx + c}

ysec2x=secxtanxdx+cysec2x=secx+c\Rightarrow y\sec^{2}x = \int_{}^{}{\sec x\tan xdx + c \Rightarrow y\sec^{2}}x = \sec x + c