Solveeit Logo

Question

Question: The solution of \(\frac{dy}{dx} + 2y\tan x = \sin x\) is...

The solution of dydx+2ytanx=sinx\frac{dy}{dx} + 2y\tan x = \sin x is

A

ysec3x=sec2x+cy\sec^{3}x = \sec^{2}x + c

B

ysec3x=sec2x+cy\sec^{3}x = \sec^{2}x + c

C

ysinx=tanx+cy\sin x = \tan x + c

D

None of these

Answer

ysec3x=sec2x+cy\sec^{3}x = \sec^{2}x + c

Explanation

Solution

Comparing with dydx+Py=Q\frac{dy}{dx} + Py = Q,

P=2tanxP = 2\tan x, Q=sinxQ = \sin x

I.F.=e2tanxdx=e2lnsecx=elnsec2x=sec2x= e^{\int_{}^{}{2\tan xdx}} = e^{2{lnsec}x} = e^{{lnsec}^{2}x} = \sec^{2}xMultiplying given equation by I.F. and integrating, ysec2x=sinx.sec2xdx=secxtanxdxy\sec^{2}x = \int_{}^{}{\sin x.\sec^{2}xdx} = \int_{}^{}{\sec x\tan xdx}ysec2x=secx+cy\sec^{2}x = \sec x + c