Solveeit Logo

Question

Question: The solution of \(\frac{d^{3}y}{dx^{3}}\) – 8 \(\frac{d^{2}y}{dx^{2}}\) = 0 satisfying y(0) = 1/8, ...

The solution of d3ydx3\frac{d^{3}y}{dx^{3}} – 8 d2ydx2\frac{d^{2}y}{dx^{2}} = 0 satisfying

y(0) = 1/8, y1 (0) = 0 and y2 (0) = 1 is –

A

y = 18\frac { 1 } { 8 } (e8x8x+78)\left( \frac{e^{8x}}{8} - x + \frac{7}{8} \right)

B

y = 18\frac { 1 } { 8 } (e8x8+x+78)\left( \frac{e^{8x}}{8} + x + \frac{7}{8} \right)

C

y = 18\frac { 1 } { 8 } (e8x8+x78)\left( \frac{e^{8x}}{8} + x - \frac{7}{8} \right)

D

None of these

Answer

y = \frac { 1 } { 8 }$$\left( \frac{e^{8x}}{8} - x + \frac{7}{8} \right)

Explanation

Solution

We have y3y2\frac{y_{3}}{y_{2}} = 8 ̃ ln y2 = 8x + C1

Putting x = 0, we have C1 = log y2 (0) = log 1 = 0

\ log y2 = 8x or y2 = e8x

i.e. y1 = e8x8\frac{e^{8x}}{8} + C2

Again, putting x = 0 , we have C2 = – 18\frac{1}{8}

So, y1 = 18\frac{1}{8} (e8x – 1) ̃ y = 18\frac { 1 } { 8 } (e8x8x)\left( \frac{e^{8x}}{8} - x \right) + C3

Putting x = 0, we have C3 = 18\frac{1}{8}164\frac{1}{64} = 764\frac{7}{64}

Thus y = 18\frac { 1 } { 8 } (e8x8x+78)\left( \frac{e^{8x}}{8} - x + \frac{7}{8} \right)