Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of dydx+ytanx=secx,y(0)=0\frac{dy}{dx} + y \, \tan \, x = \sec \, x, y (0) = 0 is

A

y sec x = tan x

B

y tan x = sec x

C

tan x = y tan x

D

x sec x = tan y

Answer

y sec x = tan x

Explanation

Solution

We have,
dydx+ytanx=secx\frac{d y}{d x}+y \tan x=\sec x
which is a linear differential equation.
 I. F=etanxdx=elogsecx=secx\therefore \text { I. } F=e^{\int \tan \,x \,d x}=e^{\log \sec x}=\sec x
\therefore The solution is given by
ysecx=secxsecxdx+Cy \cdot \sec x=\int \sec\, x \cdot \sec\, x \,d x+C
ysecx=tanx+Cy\,\sec x=\tan\, x+C...(i)
Now, y=0y=0, when x=0x=0
0=0+c\therefore 0=0+c\,\,\, [From E(i)]
c=0\Rightarrow c=0
Putting c=0c=0 in E (i), we get
ysecx=tanxy\, \sec\, x=\tan\, x