Question
Mathematics Question on Differential equations
The solution of dxdy+ytanx=secx,y(0)=0 is
A
y sec x = tan x
B
y tan x = sec x
C
tan x = y tan x
D
x sec x = tan y
Answer
y sec x = tan x
Explanation
Solution
We have,
dxdy+ytanx=secx
which is a linear differential equation.
∴ I. F=e∫tanxdx=elogsecx=secx
∴ The solution is given by
y⋅secx=∫secx⋅secxdx+C
ysecx=tanx+C...(i)
Now, y=0, when x=0
∴0=0+c [From E(i)]
⇒c=0
Putting c=0 in E (i), we get
ysecx=tanx