Solveeit Logo

Question

Mathematics Question on integral

The solution of dydx=yx+tanyx\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x} is

A

x = c sin (y/x)

B

x = c sin (xy)

C

y = c sin (y/x)

D

xy = c sin (x/y)

Answer

x = c sin (y/x)

Explanation

Solution

Given, dydx=yx+tanyx\frac{d y}{d x}=\frac{y}{x}+\tan \frac{y}{x} Put y=vxdydx=xdvdx+vy=v x \Rightarrow \frac{d y}{d x}=x \frac{d v}{d x}+v xdvdx+v=v+tanv\therefore x \frac{d v}{d x}+v=v+\tan v cotvdv=1xdx\Rightarrow \cot v\, d v=\frac{1}{x} d x On integrating both sides, we get logc+logsinv=logx csinv=x\Rightarrow \log c+\log \sin v =\log x \\\ c \sin v =x x=csin(yx)\Rightarrow x=c \sin \left(\frac{y}{x}\right)