Question
Mathematics Question on integral
The solution of dxdy=xy+tanxy is
A
x = c sin (y/x)
B
x = c sin (xy)
C
y = c sin (y/x)
D
xy = c sin (x/y)
Answer
x = c sin (y/x)
Explanation
Solution
Given, dxdy=xy+tanxy Put y=vx⇒dxdy=xdxdv+v ∴xdxdv+v=v+tanv ⇒cotvdv=x1dx On integrating both sides, we get ⇒logc+logsinv=logx csinv=x ⇒x=csin(xy)