Solveeit Logo

Question

Mathematics Question on integral

The solution of dydx=x2+y2+12xy\frac{dy}{dx} = \frac{x^{2} + y^{2} + 1}{2xy}, satisfying y(1)=0 y\left(1\right) = 0 is given by

A

hyperbola

B

circle

C

ellipse

D

parabola

Answer

hyperbola

Explanation

Solution

Given differential equation is
dydx=x2+y2+12xy\frac{dy}{dx} = \frac{x^{2} + y^{2} + 1}{2xy}
2xydy=(x2+1)dx+y2dx\Rightarrow 2xy dy = \left(x^{2} + 1\right)dx +y^{2} dx
xd(y2)y2dxx2\Rightarrow \frac{xd\left(y^{2}\right) -y^{2} dx}{x^{2}}
=(x2+1x2)dx= \left(\frac{x^{2} + 1 }{x^{2}} \right) dx
d(y2x)=(1+1x2)dx\Rightarrow \int d\left(\frac{y^{2}}{x}\right) = \int\left(1+ \frac{1}{x^{2}}\right)dx
y2x=x1xC\Rightarrow \frac{y^{2}}{x} = x - \frac{1}{x}C
y2=(x21+Cx)\Rightarrow y^{2} = \left(x^{2} - 1 + Cx\right)
When x=1,y=0x = 1, y = 0
Then, 0=11+C0 = 1 - 1 + C
C=0\Rightarrow C= 0
\therefore The solution is x2y2=1x^{2}-y^{2}=1 i.e., hyperbola.