Solveeit Logo

Question

Mathematics Question on integral

The solution of dvdt+kmv=g\frac{dv}{dt} +\frac{k}{m}v = -g is

A

v=cekmtmgkv = ce^{-^{\frac{k}{m}t}} - \frac{mg}{k}

B

v=cmgkekmtv = c- \frac{mg}{k} e^{-^{\frac{k}{m}t}}

C

vekmt=cmgkv e^{-^{\frac{k}{m}t}} = c- \frac{mg}{k}

D

vekmt=cmgkv e^{^{\frac{k}{m}t}} = c- \frac{mg}{k}

Answer

v=cekmtmgkv = ce^{-^{\frac{k}{m}t}} - \frac{mg}{k}

Explanation

Solution

dvdt+kmv=gdvdt=km(v+mgk)\frac{dv}{dt}+\frac{k}{m}v = -g \Rightarrow \frac{dv}{dt} = -\frac{k}{m}\left(v+\frac{mg}{k}\right) dvv+mg/k=kmdtlog(v+mgk)\Rightarrow \frac{dv}{v+mg/k} = -\frac{k}{m}dt \Rightarrow log \left(v+\frac{mg}{k}\right) =kmt+logC= -\frac{k}{m}t+log\,C v+mgk=Cekt/mv=Cekt/mmgk\Rightarrow v+\frac{mg}{k}= Ce^{-kt/m} \Rightarrow v = Ce^{-kt/m} -\frac{mg}{k}