Solveeit Logo

Question

Question: The solution of equation \(5\sin^{2}x - 7\sin x\cos x + 16\cos^{2}x = 4\) is...

The solution of equation 5sin2x7sinxcosx+16cos2x=45\sin^{2}x - 7\sin x\cos x + 16\cos^{2}x = 4 is

A

x=nπ+tan13x = n\pi + \tan^{- 1}3orx=nπ+tan14x = n\pi + \tan^{- 1}4

B

x=nπ+π6x = n\pi + \frac{\pi}{6}orx=nπ+π4x = n\pi + \frac{\pi}{4}

C

x=nπx = n\piorx=nπ+π4x = n\pi + \frac{\pi}{4}

D

None of these

Answer

x=nπ+tan13x = n\pi + \tan^{- 1}3orx=nπ+tan14x = n\pi + \tan^{- 1}4

Explanation

Solution

To solve this kind of equation; we use the fundamental formula trigonometrical identity, sin2x+cos2x=1\sin^{2}x + \cos^{2}x = 1

writing the equation in the form,

5sin2x7sinxcosx+16cos2x=4(sin2x+cos2x)5\sin^{2}x - 7\sin x\cos x + 16\cos^{2}x = 4(\sin^{2}x + \cos^{2}x)

\Rightarrow sin2x7sinxcosx+12cos2x=0\sin^{2}x - 7\sin x\cos x + 12\cos^{2}x = 0Dividing by cos2x\cos^{2}x on

both sides we get, tan2x7tanx+12=0\tan^{2}x - 7\tan x + 12 = 0

Now it can be factorized as; (tanx3)(tanx4)=0(\tan x - 3)(\tan x - 4) = 0

\Rightarrow tanx=3,4\tan x = 3,4

i.e., tanx=tan(tan13)\tan x = \tan(\tan^{- 1}3) or tanx=tan(tan14)\tan x = \tan(\tan^{- 1}4)

\Rightarrow x=nπ+tan13x = n\pi + \tan^{- 1}3 or x=nπ+tan14.x = n\pi + \tan^{- 1}4.