Question
Question: The solution of equation \(5\sin^{2}x - 7\sin x\cos x + 16\cos^{2}x = 4\) is...
The solution of equation 5sin2x−7sinxcosx+16cos2x=4 is
A
x=nπ+tan−13orx=nπ+tan−14
B
x=nπ+6πorx=nπ+4π
C
x=nπorx=nπ+4π
D
None of these
Answer
x=nπ+tan−13orx=nπ+tan−14
Explanation
Solution
To solve this kind of equation; we use the fundamental formula trigonometrical identity, sin2x+cos2x=1
writing the equation in the form,
5sin2x−7sinxcosx+16cos2x=4(sin2x+cos2x)
⇒ sin2x−7sinxcosx+12cos2x=0Dividing by cos2x on
both sides we get, tan2x−7tanx+12=0
Now it can be factorized as; (tanx−3)(tanx−4)=0
⇒ tanx=3,4
i.e., tanx=tan(tan−13) or tanx=tan(tan−14)
⇒ x=nπ+tan−13 or x=nπ+tan−14.