Question
Mathematics Question on complex numbers
The solution of dydx=xlogx2+xsiny+ycosy
A
(A) y sin y = x2 log x + c
B
(B) y sin y = x2 + c
C
(C) y sin y = x2 + log x + c
D
(D) y sin y = x log x + c
Answer
(A) y sin y = x2 log x + c
Explanation
Solution
Explanation:
Given equation is dydx=xlogx2+xsiny+ycosy⇒(siny+ycosy)dy=(xlogx2+x)dxOn integrating both sides, we get ∫(siny+ycosy)dy=∫(x⋅logx2+x)dx⇒−cosy+ysiny+cosy=x22logx2−∫x22⋅1x22xdx+∫xdx+c⇒ysiny=x22⋅2logx−∫xdx+∫xdx+c⇒ysiny=x2logx+c