Solveeit Logo

Question

Question: The solution of differential equation \(yy^{'} = x\left( \frac{y^{2}}{x^{2}} + \frac{\varphi(y^{2}/x...

The solution of differential equation yy=x(y2x2+φ(y2/x2)φ(y2/x2))yy^{'} = x\left( \frac{y^{2}}{x^{2}} + \frac{\varphi(y^{2}/x^{2})}{\varphi^{'}(y^{2}/x^{2})} \right) is

A

φ(y2/x2)=cx2\varphi(y^{2}/x^{2}) = cx^{2}

B

x2φ(y2/x2)=c2y2x^{2}\varphi(y^{2}/x^{2}) = c^{2}y^{2}

C

x2φ(y2/x2)=cx^{2}\varphi(y^{2}/x^{2}) = c

D

φ(y2/x2)=cyx\varphi(y^{2}/x^{2}) = \frac{cy}{x}

Answer

φ(y2/x2)=cx2\varphi(y^{2}/x^{2}) = cx^{2}

Explanation

Solution

Given equation may be re-written as

yxdydx=(yx)2+φ((y/x)2)φ((y/x)2)\frac{y}{x} \cdot \frac{dy}{dx} = \left( \frac{y}{x} \right)^{2} + \frac{\varphi((y/x)^{2})}{\varphi^{'}((y/x)^{2})} .....(i)

Let y = vx ⇒ dydx=v+xdvdx\frac{dy}{dx} = v + x\frac{dv}{dx} and yx=v\frac{y}{x} = v

∴ From (i), v(v+xdvdx)=v2+φ(v2)φ(v2)v\left( v + x\frac{dv}{dx} \right) = v^{2} + \frac{\varphi(v^{2})}{\varphi^{'}(v^{2})}vxdvdx=φ(v2)φ(v2)vx\frac{dv}{dx} = \frac{\varphi(v^{2})}{\varphi^{'}(v^{2})}

φ(v2)(2vdv)φ(v2)=2dxx\frac{\varphi^{'}(v^{2})(2vdv)}{\varphi(v^{2})} = 2\frac{dx}{x}

Integrating, ln(φ(v2))=2lnx+lnc\ln(\varphi(v^{2})) = 2\ln x + \ln cφ(v2)=cx2\varphi(v^{2}) = cx^{2}

φ(y2/x2)=cx2\varphi(y^{2}/x^{2}) = cx^{2}