Question
Question: The solution of differential equation \(yy^{'} = x\left( \frac{y^{2}}{x^{2}} + \frac{\varphi(y^{2}/x...
The solution of differential equation yy′=x(x2y2+φ′(y2/x2)φ(y2/x2)) is
A
φ(y2/x2)=cx2
B
x2φ(y2/x2)=c2y2
C
x2φ(y2/x2)=c
D
φ(y2/x2)=xcy
Answer
φ(y2/x2)=cx2
Explanation
Solution
Given equation may be re-written as
xy⋅dxdy=(xy)2+φ′((y/x)2)φ((y/x)2) .....(i)
Let y = vx ⇒ dxdy=v+xdxdv and xy=v
∴ From (i), v(v+xdxdv)=v2+φ′(v2)φ(v2) ⇒ vxdxdv=φ′(v2)φ(v2)
⇒ φ(v2)φ′(v2)(2vdv)=2xdx
Integrating, ln(φ(v2))=2lnx+lnc ⇒ φ(v2)=cx2
∴ φ(y2/x2)=cx2