Solveeit Logo

Question

Question: The solution of differential equation yy¢= x \(\left( \frac{y^{2}}{x^{2}} + \frac{f(y^{2}/x^{2})}{f...

The solution of differential equation

yy¢= x (y2x2+f(y2/x2)f(y2/x2))\left( \frac{y^{2}}{x^{2}} + \frac{f(y^{2}/x^{2})}{f'(y^{2}/x^{2})} \right)is

A

f(y2/x2) = cx2

B

x2f(y2/x2) =c2y2

C

x2f(y2/x2)= c

D

f(y2/x2) = cy/x

Answer

f(y2/x2) = cx2

Explanation

Solution

Putting y = vx, we get

v [v+xdvdx]\left\lbrack v + x\frac{dv}{dx} \right\rbrack = v2+ f(v2)f(v2)\frac{f(v^{2})}{f'(v^{2})}

Ž 2vf(v2)f(v2)dv\frac{2vf'(v^{2})}{f(v^{2})}dv = 2 dvx\frac{dv}{x}

Now integrating both sides, we get

log f (v2) = log x2 + log c

[log c = constant]

or f(y2/x2) = cx2