Solveeit Logo

Question

Question: The solution of differential equation y – x \(\frac{dy}{dx}\)= a\(\left( y^{2} + \frac{dy}{dx} \righ...

The solution of differential equation y – x dydx\frac{dy}{dx}= a(y2+dydx)\left( y^{2} + \frac{dy}{dx} \right) is - = a(y2+dydx)\left( y^{2} + \frac{dy}{dx} \right) is –

A

(x + a) (x + ay) = cy

B

(x + a) (1 – ay) = cy

C

(x + a) (1 – ay) = c

D

None of these

Answer

(x + a) (1 – ay) = cy

Explanation

Solution

y – x dydx\frac{dy}{dx} = a(y2+dydx)\left( y^{2} + \frac{dy}{dx} \right)

Ž y – ay2 = adydx\frac{dy}{dx} + x dydx\frac{dy}{dx}

Ž y (1 – ay) = (a + x) dydx\frac{dy}{dx}

Ž dy(a+x)\frac{dy}{(a + x)} = dyy(1ay)\frac{dy}{y(1–ay)}

On integrating both sides, we get

dx(a+x)\int_{}^{}\frac{dx}{(a + x)} = dyy(1ay)\int_{}^{}\frac{dy}{y(1–ay)}

Ž log (a + x) = [1y+a(1ay)]\int_{}^{}\left\lbrack \frac{1}{y} + \frac{a}{(1 - ay)} \right\rbrackdx

Ž log (a + x) = log y + alog(1ay)a\frac{a\log(1 - ay)}{- a} + log c

Ž log (a + x) = log y – log (1 – ay) + log c

Ž log (x + a) (1 – ay) = log cy

Ž (x + a) (1 – ay) = cy