Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of differential equation ydxdy=x(logexlogey+1), x>0,y>0y\frac {dx}{dy}=x(log_e x-log_e y+1),\ x>0, y>0 and passing through (e,1)(e,1) is

A

loge(yx)=y2|log_e(\frac yx)| = y^2

B

2loge(xy)=y2|log_e(\frac xy)| = y

C

loge(yx)=x|log_e(\frac yx)| = x

D

loge(xy)=y|log_e(\frac xy)| = y

Answer

loge(xy)=y|log_e(\frac xy)| = y

Explanation

Solution

The correct option is (D): loge(xy)=y|log_e(\frac xy)| = y