Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of differential equation xdydx+2y=x2x \frac {dy}{dx}+2y=x^2 is

A

y=x2+C4x2y =\frac {{x^2} +C}{4x^2}

B

y=x24+Cy =\frac {x^2}{4}+C

C

y=x2+Cx2y =\frac {x^2+C} {x^2}

D

y=x4+C4x2y =\frac {x^4+C}{4x^2}

Answer

y=x4+C4x2y =\frac {x^4+C}{4x^2}

Explanation

Solution

We have, x=dydx+2y=x2x=\frac{dy}{dx}+2y=x^{2} dydx+2xy=x\Rightarrow \frac{dy}{dx}+\frac{2}{x}\,y=x The above equation is a linear differential equation in y. IF=e2xdx=e2logx=x2\therefore IF=e^{\int \frac{2}{x} dx}\,=e^{2\,log\,x}=x^{2} Hence, required solution will be y.x2=x.x2dx+C1 y . x^{2}=\int x . x^{2}\,dx+C_{1} yx2=x44+C1\Rightarrow yx^{2}=\frac{x^{4}}{4}+C_{1} yx2=x4+4C14\Rightarrow yx^{2}=\frac{x^{4}+4C_{1}}{4} y=x4+C4x2\Rightarrow y=\frac{x^{4}+C}{4x^{2}} [4C1=C][\because 4C_{1}=C]