Solveeit Logo

Question

Question: The solution of differential equation \(x \frac { d y } { d x } + y = y ^ { 2 }\) is...

The solution of differential equation xdydx+y=y2x \frac { d y } { d x } + y = y ^ { 2 } is

A

y=1+cxyy = 1 + c x y

B

y=log{cxy}y = \log \{ c x y \}

C

y+1=cxyy + 1 = c x y

D

y=c+xyy = c + x y

Answer

y=1+cxyy = 1 + c x y

Explanation

Solution

xdydx+y=y2x \frac { d y } { d x } + y = y ^ { 2 }xdydx=y2yx \frac { d y } { d x } = y ^ { 2 } - y

dyy2y=dxx\frac { d y } { y ^ { 2 } - y } = \frac { d x } { x }[1y11y]dy=dxx\left[ \frac { 1 } { y - 1 } - \frac { 1 } { y } \right] d y = \frac { d x } { x }

On integrating, we get

log(y1)logy=logx+logc\log ( y - 1 ) - \log y = \log x + \log c

y1y=xc\frac { y - 1 } { y } = x cy=1+cxyy = 1 + c x y.