Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of differential equation dydx3y=sin2x\frac{dy}{dx}-3y=sin\,2x is

A

y=e3x[cos2x+3sin2x13]+cy=e^{-3x}\left[\frac{cos\,2x+3\,sin\,2x}{13}\right]+c

B

y=e3x(cos2x3sin2x13)+cy=e^{-3x}\left(\frac{cos\,2x-3\,sin\,2x}{13}\right)+c

C

ye3x=e3x(2cos2x+3sin2x)13+cye^{-3x}=-e^{-3x} \frac{\left(2\,cos\,2x+3\,sin\,2x\right)}{13}+c

D

none of these

Answer

ye3x=e3x(2cos2x+3sin2x)13+cye^{-3x}=-e^{-3x} \frac{\left(2\,cos\,2x+3\,sin\,2x\right)}{13}+c

Explanation

Solution

dydx3y=sin2x\frac{dy}{dx}-3y=sin\,2x \Rightarrow It is linear equation with I.F.=e3dx=e3xI.F.=e^{\int-3dx}=e^{-3x} Required solution is, ye3x=e3xsin2xdxy\cdot e^{-3x}=\int e^{-3x}\,sin\,2x\,dx =e3x(3sin2x2cos2x)22+32+c=e^{-3x} \frac{\left(-3\,sin\,2x-2\,cos\,2x\right)}{2^{2}+3^{2}}+c ye3x=e3x(3sin2x+2cos2x)13+c\Rightarrow y\,e^{-3x}=-e^{-3x} \frac{\left(3\,sin\,2x+2\,cos\,2x\right)}{13}+c