Question
Mathematics Question on Differential equations
The solution of differential equation dxdy−3y=sin2x is
A
y=e−3x[13cos2x+3sin2x]+c
B
y=e−3x(13cos2x−3sin2x)+c
C
ye−3x=−e−3x13(2cos2x+3sin2x)+c
D
none of these
Answer
ye−3x=−e−3x13(2cos2x+3sin2x)+c
Explanation
Solution
dxdy−3y=sin2x ⇒ It is linear equation with I.F.=e∫−3dx=e−3x Required solution is, y⋅e−3x=∫e−3xsin2xdx =e−3x22+32(−3sin2x−2cos2x)+c ⇒ye−3x=−e−3x13(3sin2x+2cos2x)+c