Solveeit Logo

Question

Question: The solution of differential equation \(\frac { d y } { d x } + \sin ^ { 2 } y = 0\) is...

The solution of differential equation dydx+sin2y=0\frac { d y } { d x } + \sin ^ { 2 } y = 0 is

A

y+2cosy=cy + 2 \cos y = c

B

y2siny=cy - 2 \sin y = c

C

x=coty+cx = \cot y + c

D

y=cotx+cy = \cot x + c

Answer

x=coty+cx = \cot y + c

Explanation

Solution

dydx+sin2y=0\frac { d y } { d x } + \sin ^ { 2 } y = 0dysin2y=dx- \frac { d y } { \sin ^ { 2 } y } = d x.

On integrating, we get