Question
Question: The solution of \(\dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\th...
The solution of 1+cosθ3sinθ−sin3θ+1−sinθ3cosθ+cos3θ=42cos(θ+4π)
A. nπ
B. nπ+12π
C. nπ±2π
D. 2nπ
Solution
First we will expand the term cos(θ+4π) by using the formula cos(A+B)=cosA.cosB−sinA.sinB. Now we will substitute the value cos4π=sin4π=21 and simplify the term in the right side of the given equation. Now in the left side we have the terms sin3θ, cos3θ. So we will use the formulas sin3θ=3sinθ−4sin3θ and cos3θ=4cos3θ−3cosθ then we will simplify the terms in the right side and equate the obtained value to the simplified form of the right side term. Now we will solve the obtained equation to get the result.
Complete step-by-step answer:
Given that,
1+cosθ3sinθ−sin3θ+1−sinθ3cosθ+cos3θ=42cos(θ+4π)
Expanding the term cos(θ+4π) by using the formula cos(A+B)=cosA.cosB−sinA.sinB, then we will get
⇒1+cosθ3sinθ−sin3θ+1−sinθ3cosθ+cos3θ=42[cosθ.cos4π−sinθ.sin4π]
Now substituting the value cos4π=sin4π=21 in the above equation, we will get
⇒1+cosθ3sinθ−sin3θ+1−sinθ3cosθ+cos3θ=42[cosθ.21−sinθ.21]⇒1+cosθ3sinθ−sin3θ+1−sinθ3cosθ+cos3θ=42×21[cosθ−sinθ]⇒1+cosθ3sinθ−sin3θ+1−sinθ3cosθ+cos3θ=4(cosθ−sinθ)
We know that sin3θ=3sinθ−4sin3θ and cos3θ=4cos3θ−3cosθ, so substituting these values in the above equation, then we will have
⇒1+cosθ3sinθ−(3sinθ−4sin3θ)+1−sinθ3cosθ+4cos3θ−3cosθ=4(cosθ−sinθ)⇒1+cosθ4sin3θ+1−sinθ4cos3θ=4(cosθ−sinθ)
Multiplying the term 1−cosθ1−cosθ with 1+cosθ4sin3θ and 1+sinθ1+sinθ with 1−sinθ4cos3θ in the above equation, then we will get
⇒1+cosθ4sin3θ×1−cosθ1−cosθ+1−sinθ4cos3θ×1+sinθ1+sinθ=4(cosθ−sinθ)
Using the formula (a+b)(a−b)=a2−b2 in the above equation, then we will get
⇒12−cos2θ4sin3θ(1−cosθ)+12−sin2θ4cos3θ(1+sinθ)=4(cosθ−sinθ)
We have the trigonometric identity sin2θ+cos2θ=1, from this identity the values of 1−cos2θ and 1−sin2θ are sin2θ, cos2θ respectively. Substituting these values in the above equation, then we will have
⇒sin2θ4sin3θ(1−cosθ)+cos2θ4cos3θ(1+sinθ)=4(cosθ−sinθ)⇒4sinθ(1−cosθ)+4cosθ(1+sinθ)=4(cosθ−sinθ)
Applying multiplication distribution law in the above equation, then we will get
⇒4sinθ−4sinθ.cosθ+4cosθ+4cosθ.sinθ=4cosθ−4sinθ⇒4sinθ+4cosθ−4cosθ+4sinθ=0⇒8sinθ=0⇒sinθ=0
We know that the solution for the equation sinθ=0 is given by θ=nπ.
Hence the solution for the given equation is θ=nπ.
So, the correct answer is “Option A”.
Note: We can also solve the problem by drawing the equation in graph. When we solve the given equation, we get the equation sinθ=0 so draw a graph for the sinθ=0 as shown in the figure below.
Here we can clearly observe that the equation has zero value for θ=±π,±2π,±3π,.... We can simply write it as θ=nπ. From both the methods we got the same result.