Solveeit Logo

Question

Question: The solution of \(\dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\th...

The solution of 3sinθsin3θ1+cosθ+3cosθ+cos3θ1sinθ=42cos(θ+π4)\dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\cos \left( \theta +\dfrac{\pi }{4} \right)
A. nπn\pi
B. nπ+π12n\pi +\dfrac{\pi }{12}
C. nπ±π2n\pi \pm \dfrac{\pi }{2}
D. 2nπ2n\pi

Explanation

Solution

First we will expand the term cos(θ+π4)\cos \left( \theta +\dfrac{\pi }{4} \right) by using the formula cos(A+B)=cosA.cosBsinA.sinB\cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B. Now we will substitute the value cosπ4=sinπ4=12\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}} and simplify the term in the right side of the given equation. Now in the left side we have the terms sin3θ\sin 3\theta , cos3θ\cos 3\theta . So we will use the formulas sin3θ=3sinθ4sin3θ\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta and cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta then we will simplify the terms in the right side and equate the obtained value to the simplified form of the right side term. Now we will solve the obtained equation to get the result.

Complete step-by-step answer:
Given that,
3sinθsin3θ1+cosθ+3cosθ+cos3θ1sinθ=42cos(θ+π4)\dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\cos \left( \theta +\dfrac{\pi }{4} \right)
Expanding the term cos(θ+π4)\cos \left( \theta +\dfrac{\pi }{4} \right) by using the formula cos(A+B)=cosA.cosBsinA.sinB\cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B, then we will get
3sinθsin3θ1+cosθ+3cosθ+cos3θ1sinθ=42[cosθ.cosπ4sinθ.sinπ4]\Rightarrow \dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\left[ \cos \theta .\cos \dfrac{\pi }{4}-\sin \theta .\sin \dfrac{\pi }{4} \right]
Now substituting the value cosπ4=sinπ4=12\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}} in the above equation, we will get
3sinθsin3θ1+cosθ+3cosθ+cos3θ1sinθ=42[cosθ.12sinθ.12] 3sinθsin3θ1+cosθ+3cosθ+cos3θ1sinθ=42×12[cosθsinθ] 3sinθsin3θ1+cosθ+3cosθ+cos3θ1sinθ=4(cosθsinθ) \begin{aligned} & \Rightarrow \dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\left[ \cos \theta .\dfrac{1}{\sqrt{2}}-\sin \theta .\dfrac{1}{\sqrt{2}} \right] \\\ & \Rightarrow \dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\sqrt{2}\times \dfrac{1}{\sqrt{2}}\left[ \cos \theta -\sin \theta \right] \\\ & \Rightarrow \dfrac{3\sin \theta -\sin 3\theta }{1+\cos \theta }+\dfrac{3\cos \theta +\cos 3\theta }{1-\sin \theta }=4\left( \cos \theta -\sin \theta \right) \\\ \end{aligned}
We know that sin3θ=3sinθ4sin3θ\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta and cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta , so substituting these values in the above equation, then we will have
3sinθ(3sinθ4sin3θ)1+cosθ+3cosθ+4cos3θ3cosθ1sinθ=4(cosθsinθ) 4sin3θ1+cosθ+4cos3θ1sinθ=4(cosθsinθ) \begin{aligned} & \Rightarrow \dfrac{3\sin \theta -\left( 3\sin \theta -4{{\sin }^{3}}\theta \right)}{1+\cos \theta }+\dfrac{3\cos \theta +4{{\cos }^{3}}\theta -3\cos \theta }{1-\sin \theta }=4\left( \cos \theta -\sin \theta \right) \\\ & \Rightarrow \dfrac{4{{\sin }^{3}}\theta }{1+\cos \theta }+\dfrac{4{{\cos }^{3}}\theta }{1-\sin \theta }=4\left( \cos \theta -\sin \theta \right) \\\ \end{aligned}
Multiplying the term 1cosθ1cosθ\dfrac{1-\cos \theta }{1-\cos \theta } with 4sin3θ1+cosθ\dfrac{4{{\sin }^{3}}\theta }{1+\cos \theta } and 1+sinθ1+sinθ\dfrac{1+\sin \theta }{1+\sin \theta } with 4cos3θ1sinθ\dfrac{4{{\cos }^{3}}\theta }{1-\sin \theta } in the above equation, then we will get
4sin3θ1+cosθ×1cosθ1cosθ+4cos3θ1sinθ×1+sinθ1+sinθ=4(cosθsinθ)\Rightarrow \dfrac{4{{\sin }^{3}}\theta }{1+\cos \theta }\times \dfrac{1-\cos \theta }{1-\cos \theta }+\dfrac{4{{\cos }^{3}}\theta }{1-\sin \theta }\times \dfrac{1+\sin \theta }{1+\sin \theta }=4\left( \cos \theta -\sin \theta \right)
Using the formula (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} in the above equation, then we will get
4sin3θ(1cosθ)12cos2θ+4cos3θ(1+sinθ)12sin2θ=4(cosθsinθ)\Rightarrow \dfrac{4{{\sin }^{3}}\theta \left( 1-\cos \theta \right)}{{{1}^{2}}-{{\cos }^{2}}\theta }+\dfrac{4{{\cos }^{3}}\theta \left( 1+\sin \theta \right)}{{{1}^{2}}-{{\sin }^{2}}\theta }=4\left( \cos \theta -\sin \theta \right)
We have the trigonometric identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, from this identity the values of 1cos2θ1-{{\cos }^{2}}\theta and 1sin2θ1-{{\sin }^{2}}\theta are sin2θ{{\sin }^{2}}\theta , cos2θ{{\cos }^{2}}\theta respectively. Substituting these values in the above equation, then we will have
4sin3θ(1cosθ)sin2θ+4cos3θ(1+sinθ)cos2θ=4(cosθsinθ) 4sinθ(1cosθ)+4cosθ(1+sinθ)=4(cosθsinθ) \begin{aligned} & \Rightarrow \dfrac{4{{\sin }^{3}}\theta \left( 1-\cos \theta \right)}{{{\sin }^{2}}\theta }+\dfrac{4{{\cos }^{3}}\theta \left( 1+\sin \theta \right)}{{{\cos }^{2}}\theta }=4\left( \cos \theta -\sin \theta \right) \\\ & \Rightarrow 4\sin \theta \left( 1-\cos \theta \right)+4\cos \theta \left( 1+\sin \theta \right)=4\left( \cos \theta -\sin \theta \right) \\\ \end{aligned}
Applying multiplication distribution law in the above equation, then we will get
4sinθ4sinθ.cosθ+4cosθ+4cosθ.sinθ=4cosθ4sinθ 4sinθ+4cosθ4cosθ+4sinθ=0 8sinθ=0 sinθ=0 \begin{aligned} & \Rightarrow 4\sin \theta -4\sin \theta .\cos \theta +4\cos \theta +4\cos \theta .\sin \theta =4\cos \theta -4\sin \theta \\\ & \Rightarrow 4\sin \theta +4\cos \theta -4\cos \theta +4\sin \theta =0 \\\ & \Rightarrow 8\sin \theta =0 \\\ & \Rightarrow \sin \theta =0 \\\ \end{aligned}
We know that the solution for the equation sinθ=0\sin \theta =0 is given by θ=nπ\theta =n\pi .
Hence the solution for the given equation is θ=nπ\theta =n\pi .

So, the correct answer is “Option A”.

Note: We can also solve the problem by drawing the equation in graph. When we solve the given equation, we get the equation sinθ=0\sin \theta =0 so draw a graph for the sinθ=0\sin \theta =0 as shown in the figure below.

Here we can clearly observe that the equation has zero value for θ=±π,±2π,±3π,...\theta =\pm \pi ,\pm 2\pi ,\pm 3\pi ,.... We can simply write it as θ=nπ\theta =n\pi . From both the methods we got the same result.