Solveeit Logo

Question

Mathematics Question on integral

The solution of (D2^2 + 16) y = cos4x is

A

Acos4x + Bsin 4x + x8sin4x\frac{x}{8}sin 4x

B

Acos4x + Bsin 4x - x8sin4x\frac{x}{8}sin 4x

C

Acos4x + Bsin 4x + x4sin4x\frac{x}{4}sin 4x

D

Acos4x + Bsin 4x - x4sin4x\frac{x}{4}sin 4x

Answer

Acos4x + Bsin 4x + x8sin4x\frac{x}{8}sin 4x

Explanation

Solution

If (D2^2 + 16)y = cos 4x

Here the auxiliary equation is m2^2 + 16 = 0
\Rightarrow m = 4

\therefore Complementary function = (A cos 4x + B sin 4x) &
Particular Integral (P.I.) =1D2+16.cos4x= \frac{1}{D^2 + 16}. \, cos4x

But 1D2+a2cosax=x2asinax\frac{1}{D^2 \, + \, a^2} cos ax = \frac{x}{2a}sin ax

\therefore P.I.=x2×4\frac{x}{2 \times 4}. sin 4x
= x8sin4x\frac{x}{8}sin4x

\therefore Solution y = Complementary function ++ Particular Integral
\Rightarrow y = A cos 4x + B sin 4x + x8\frac{x}{8}sin 4 x