Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of 25d2ydx210dydx+y=0,y(0)=1,y(1)=2e1525\frac{d^{2}y}{dx^{2}}-10 \frac{dy}{dx}+y=0, \, y\left(0\right) =1, \, y\left(1\right)=2e^{\frac{1}{5}} is

A

y=e5x+e5xy=e^{5x} +e^{-5x}

B

y=(1+x)e5xy=\left(1+x\right)e^{5x}

C

y=(1+x)ex5y=\left(1+x\right)e^{\frac{x}{5}}

D

y=(1+x)ex5y=\left(1+x\right)e ^{\frac{-x}{5}}

Answer

y=(1+x)ex5y=\left(1+x\right)e^{\frac{x}{5}}

Explanation

Solution

The correct answer is C:y=(1+x)ex5y=(1+x)^{e^{\frac{x}{5}}}
Let y=emxy=e^{m x} be the solution of given differential equation,
dydx=memx\Rightarrow \frac{d y}{d x} =m e^{m x}
d2ydx2=m2emx\Rightarrow \frac{d^{2} y}{d x^{2}}=m^{2} e^{m x}
25d2ydx210dydx+y=0\therefore 25 \frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+y=0
25m2emx10memx+emx=0\Rightarrow 25 m^{2} e^{m x}-10 m e^{m x}+e^{m x}=0
emx(25m210m+1)=0\Rightarrow e^{m x}\left(25 m^{2}-10 m+1\right)=0
\Rightarrow Auxiliary equation
25m210m+1=0\Rightarrow 25 m^{2}-10 m+1=0
emx0e^{m x} \neq 0
(5m)22(5m)×1+1=0\Rightarrow (5 m)^{2}-2(5 m) \times 1+1=0
(5m1)2=0\Rightarrow (5 m-1)^{2}=0
m=15,15\Rightarrow m=\frac{1}{5}, \frac{1}{5}
Since, roots are real and equal.
\therefore General solution is y=(c1+c2x)ex/5y=\left(c_{1}+c_{2} x\right) e^{x / 5} ... (i)
y(0)=1c1=1y(0)=1 \Rightarrow c_{1}=1
y(1)=2e1/52e1/5=(c1+c2)e1/5y(1)= 2 e^{1 / 5} \Rightarrow 2 e^{1 / 5}=\left(c_{1}+c_{2}\right) e^{1 / 5}
c1+c2=2\Rightarrow c_{1}+c_{2}=2
c1=1\Rightarrow c_{1}=1
Putting the value of c1c_{1} and c2c_{2} in E (i), we get particular solution
y=(1+x)ex/5y=(1+x) e^{x / 5}