Question
Mathematics Question on Differential equations
The solution of 25dx2d2y−10dxdy+y=0,y(0)=1,y(1)=2e51 is
A
y=e5x+e−5x
B
y=(1+x)e5x
C
y=(1+x)e5x
D
y=(1+x)e5−x
Answer
y=(1+x)e5x
Explanation
Solution
The correct answer is C:y=(1+x)e5x
Let y=emx be the solution of given differential equation,
⇒dxdy=memx
⇒dx2d2y=m2emx
∴25dx2d2y−10dxdy+y=0
⇒25m2emx−10memx+emx=0
⇒emx(25m2−10m+1)=0
⇒ Auxiliary equation
⇒25m2−10m+1=0
emx=0
⇒(5m)2−2(5m)×1+1=0
⇒(5m−1)2=0
⇒m=51,51
Since, roots are real and equal.
∴ General solution is y=(c1+c2x)ex/5 ... (i)
y(0)=1⇒c1=1
y(1)=2e1/5⇒2e1/5=(c1+c2)e1/5
⇒c1+c2=2
⇒c1=1
Putting the value of c1 and c2 in E (i), we get particular solution
y=(1+x)ex/5