Solveeit Logo

Question

Question: The solution curve of the differential equation x + y(dy/dx) = 2y makes intercept on y - axis of len...

The solution curve of the differential equation x + y(dy/dx) = 2y makes intercept on y - axis of length

A

0

B

c

C

\infty

D

None of these

Answer

c

Explanation

Solution

x+ydydx=2ydydx=2yxdydx=2yxyx + y\frac{dy}{dx} = 2y \Rightarrow \frac{dy}{dx} = 2y - x \Rightarrow \frac{dy}{dx} = \frac{2y - x}{y}

Let y=νxdydx=ν+xdνdxy = \nu x \Rightarrow \frac{dy}{dx} = \nu + x\frac{d\nu}{dx}

\therefore given equation becomes ν+xdνdx=2ν1ν\nu + x\frac{d\nu}{dx} = \frac{2\nu - 1}{\nu}

\Rightarrow xdνdx=2ν1νν=2ν1ν2ν=(ν1)2νx\frac{d\nu}{dx} = \frac{2\nu - 1}{\nu} - \nu = \frac{2\nu - 1 - \nu^{2}}{\nu} = \frac{- (\nu - 1)^{2}}{\nu}

ν(ν1)2dν=dxx0=dxx+ν(ν1)2dν\Rightarrow - \frac{\nu}{(\nu - 1)^{2}}d\nu = \frac{dx}{x} \Rightarrow 0 = \frac{dx}{x} + \frac{\nu}{(\nu - 1)^{2}}d\nu

Integrate both sides, we get k=logx+ν(ν1)2dνk = \log x + \int_{}^{}\frac{\nu}{(\nu - 1)^{2}}d\nu

k=logx+t+1t2dt\Rightarrow k = \log x + \int_{}^{}\frac{t + 1}{t^{2}}dt (putt=ν1=dν)(putt = \nu - 1 \Rightarrow = d\nu)

k=logx+(1t+1t2)dtk=logx+logt1t\Rightarrow k = \log x + \int_{}^{}{\left( \frac{1}{t} + \frac{1}{t^{2}} \right)dt} \Rightarrow k = \log x + \log t - \frac{1}{t}

k=logx+log(yx1)1yx1\Rightarrow k = \log x + \log\left( \frac{y}{x} - 1 \right) - \frac{1}{\frac{y}{x} - 1}

k=logx+log(yx)logxxyx\Rightarrow k = \log x + \log(y - x) - \log x - \frac{x}{y - x}

\Rightarrow log(yx)xyx=k\log(y - x) - \frac{x}{y - x} = k

At x = 0, k = loge y \Rightarrow y = ek = c.