Solveeit Logo

Question

Mathematics Question on Differential Equations

The solution curve of the differential equation ydxdy=x(logexlogey+1)y \frac{dx}{dy} = x (\log_e x - \log_e y + 1), x>0x > 0, y>0y > 0 passing through the point (e,1)(e, 1) is

A

logeyx=x\quad \left| \log_e \frac{y}{x} \right| = x

B

logeyx=y2\quad \left| \log_e \frac{y}{x} \right| = y^2

C

logexy=y\quad \left| \log_e \frac{x}{y} \right| = y

D

2logexy=y+1\quad 2 \left| \log_e \frac{x}{y} \right| = y + 1

Answer

logexy=y\quad \left| \log_e \frac{x}{y} \right| = y

Explanation

Solution

Given:

dxdy=xy(ln(xy)+1)\frac{dx}{dy} = \frac{x}{y} \left( \ln \left( \frac{x}{y} \right) + 1 \right)

Let:

xy=t    x=ty\frac{x}{y} = t \quad \implies \quad x = ty

Differentiating:

dxdy=t+ydtdy\frac{dx}{dy} = t + y \frac{dt}{dy}

Substitute:

t+ydtdy=t(ln(t)+1)t + y \frac{dt}{dy} = t \left( \ln(t) + 1 \right)

Rearranging:

dtdy=tln(t)y\frac{dt}{dy} = \frac{t \ln(t)}{y}

Integrating both sides:

1tdt=dyy\int \frac{1}{t} dt = \int \frac{dy}{y}

Let lnt=p\ln t = p:

dp=1tdt    ln(xy)=ydp = \frac{1}{t} dt \quad \implies \quad \ln \left( \frac{x}{y} \right) = y