Question
Mathematics Question on Differential Equations
The solution curve of the differential equation ydydx=x(logex−logey+1), x>0, y>0 passing through the point (e,1) is
A
logexy=x
B
logexy=y2
C
logeyx=y
D
2logeyx=y+1
Answer
logeyx=y
Explanation
Solution
Given:
dydx=yx(ln(yx)+1)
Let:
yx=t⟹x=ty
Differentiating:
dydx=t+ydydt
Substitute:
t+ydydt=t(ln(t)+1)
Rearranging:
dydt=ytln(t)
Integrating both sides:
∫t1dt=∫ydy
Let lnt=p:
dp=t1dt⟹ln(yx)=y