Solveeit Logo

Question

Question: The solubility product of \[A{{g}_{2}}{{C}_{2}}{{O}_{4}}\] at 25℃ is \[1.29\times {{10}^{-11}}mo{{l}...

The solubility product of Ag2C2O4A{{g}_{2}}{{C}_{2}}{{O}_{4}} at 25℃ is 1.29×1011mol3L31.29\times {{10}^{-11}}mo{{l}^{3}}{{L}^{-3}}. A solution of
K2C2O4{{K}_{2}}{{C}_{2}}{{O}_{4}} containing 0.1520 mol in 500 mL of water is shaken with excess of
Ag2CO3A{{g}_{2}}C{{O}_{3}} till the following equilibrium is reached.
Ag2CO3+K2C2O4Ag2C2O4+K2CO3A{{g}_{2}}C{{O}_{3}}+{{K}_{2}}{{C}_{2}}{{O}_{4}}\rightleftharpoons A{{g}_{2}}{{C}_{2}}{{O}_{4}}+{{K}_{2}}C{{O}_{3}}
At equilibrium, the solution contains 0.0358 mole of K2CO3{{K}_{2}}C{{O}_{3}}. Assuming the degree
of dissociation of K2C2O4{{K}_{2}}{{C}_{2}}{{O}_{4}} and K2CO3{{K}_{2}}C{{O}_{3}} to be equal, calculate the solubility product of Ag2CO3A{{g}_{2}}C{{O}_{3}}.

Explanation

Solution

Hint: Solubility product constant, Ksp{{K}_{sp}}​, is an equilibrium constant for a solid substance which is dissolving in an aqueous solution. It tells us the level at which a solute can dissolve in solution. The more soluble a substance is, the higher will be the value Ksp{{K}_{sp}}.

Complete step-by-step answer:
We have been given that Ag2CO3A{{g}_{2}}C{{O}_{3}} is present in excess and it reacts with K2C2O4{{K}_{2}}{{C}_{2}}{{O}_{4}}. Initially, before the reaction the amount of products will be zero. As the reaction proceeds, the reactants will be depleted to form products. The same thing is depicted in the below equation.

& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;A{{g}_{2}}C{{O}_{3}}\;\;\;+\;\;\;{{K}_{2}}{{C}_{2}}{{O}_{4}}\;\;\;\;\;\;\;\rightleftharpoons \;\;\;\;\;\;\;A{{g}_{2}}{{C}_{2}}{{O}_{4}}+{{K}_{2}}C{{O}_{3}} \\\ & Moles\,at\,start\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;Excess\;\;\;\;\;\;\;\;\;\;\;\;\;0.1520\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,0 \\\ & Moles\,after\,reation\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(0.1520-0.0358)\,\,\,\,\,\,\;\;\;\;\;\;\;\;\;\;\;\;0.0358\,\,\,\,\,\,\,\,\,0.0358 \\\ & \,\,\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=0.1162 \\\ \end{aligned}$$ The molar concentration of $${{K}_{2}}{{C}_{2}}{{O}_{4}}$$ or $${{C}_{2}}{{O}_{4}}^{2-}$$ left unreacted will be; $$\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]=\dfrac{0.1162}{0.5}=0.2324\,M$$ The molar concentration of $${{K}_{2}}C{{O}_{3}}$$ or $$C{{O}_{3}}^{2-}$$ left unreacted will be; $$\left[ C{{O}_{3}}^{2-} \right]=\dfrac{0.0358}{0.5}=0.0716\,M$$ We have been given that the solubility product ($${{K}_{sp}}$$) of $$A{{g}_{2}}{{C}_{2}}{{O}_{4}}$$at 25℃ is $$1.29\times {{10}^{-11}}mo{{l}^{3}}{{L}^{-3}}$$ Therefore, we can write from the above statement that, $${{\left[ A{{g}^{+}} \right]}^{2}}\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]={{K}_{sp}}$$ of $$(A{{g}_{2}}{{C}_{2}}{{O}_{4}})$$ We will now substitute the value of concentration of $$\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]$$ found earlier. $${{\left[ A{{g}^{+}} \right]}^{2}}\left[ 0.2324 \right]=1.29\times {{10}^{-11}}$$ On rearranging, $${{\left[ A{{g}^{+}} \right]}^{2}}=\dfrac{1.29\times {{10}^{-11}}}{0.2324}=5.55\times {{10}^{-11}}$$ Now the solubility product ($${{K}_{sp}}$$) of $$A{{g}_{2}}C{{O}_{3}}$$ can be written as, $${{K}_{sp}}={{\left[ A{{g}^{+}} \right]}^{2}}\left[ C{{O}_{3}}^{2-} \right]$$ Finally, substituting the values of concentration of $${{\left[ A{{g}^{+}} \right]}^{2}}$$and $$\left[ C{{O}_{3}}^{2-} \right]$$ respectively, we get $$\begin{aligned} & {{K}_{sp}}=5.55\times {{10}^{-11}}\times 0.0716 \\\ & \,\,\,\,\,\,\,\,=3.974\times {{10}^{-12}}\,mo{{l}^{3}}{{L}^{-3}} \\\ \end{aligned}$$ Note: We can also find out which compound will precipitate from the data found in the solution. It can be given as: $$\begin{aligned} & {{\left[ A{{g}^{+}} \right]}^{2}}\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]={{\left( \dfrac{2\times 0.0358}{0.5} \right)}^{2}}\left( \dfrac{0.1520}{0.5} \right) \\\ & \,\,\,\,=\,6.23\times {{10}^{-3}} \\\ \end{aligned}$$ Since, $${{\left[ A{{g}^{+}} \right]}^{2}}\left[ {{C}_{2}}{{O}_{4}}^{2-} \right]>{{K}_{sp}}$$ of$$A{{g}_{2}}{{C}_{2}}{{O}_{4}}$$$$(1.29\times {{10}^{-11}}mo{{l}^{3}}{{L}^{-3}})$$ $$A{{g}_{2}}{{C}_{2}}{{O}_{4}}$$ will precipitate out.