Solveeit Logo

Question

Question: The solubility of \[{\text{AgCl(s)}}\] with solubility product \[{\text{1}}{\text{.6}} \times {\text...

The solubility of AgCl(s){\text{AgCl(s)}} with solubility product 1.6×10 - 10{\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}} in 0.1M NaCl{\text{NaCl}}solution would be:
A) 1.6×10 - 11 M{\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{{\text{ - 11}}}}{\text{ M}}
B) Zero
C) 1.26×10 - 5 M{\text{1}}{\text{.26}} \times {\text{1}}{{\text{0}}^{{\text{ - 5}}}}{\text{ M}}
D) 1.6×10 - 9 M{\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{ M}}

Explanation

Solution

Write the dissociation reaction of AgCl(s){\text{AgCl(s)}}.Using the concentration of NaCl{\text{NaCl}} solution calculate the initial concentration of Cl - {\text{C}}{{\text{l}}^{\text{ - }}} ions. Using the solubility product of AgCl(s){\text{AgCl(s)}} and initial concentration of Cl - {\text{C}}{{\text{l}}^{\text{ - }}} ions calculate the solubility of AgCl(s){\text{AgCl(s)}}.

Formula Used: Ksp = [Ag+][Cl - ]{\text{Ksp = }}[{\text{A}}{{\text{g}}^ + }]{\text{[C}}{{\text{l}}^{\text{ - }}}]

Complete step by step answer:
For the given AgCl(s){\text{AgCl(s)}} salt we have to write the balanced dissociation reaction.
AgCl(s) Ag+(aq)+ Cl(aq){\text{AgCl(s)}} \rightleftharpoons {\text{ A}}{{\text{g}}^ + }{\text{(aq)}} + {\text{ C}}{{\text{l}}^ - }{\text{(aq)}}
We have to determine the solubility of AgCl(s){\text{AgCl(s)}} in 0.1M NaCl{\text{NaCl}} solution. As we know NaCl{\text{NaCl}} is a strong electrolyte so will completely dissociate into Na + {\text{N}}{{\text{a}}^{\text{ + }}} and Cl - {\text{C}}{{\text{l}}^{\text{ - }}} ions.
So, the initial concentration of Cl - {\text{C}}{{\text{l}}^{\text{ - }}}ions = 0.1M
The solubility product of AgCl(s){\text{AgCl(s)}} given to us is 1.6×10 - 10{\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}}. The smaller value of the solubility product indicates that AgCl(s){\text{AgCl(s)}} is slightly soluble.
Assume solubility of AgCl(s){\text{AgCl(s)}} as ‘s’ M
So,‘s’ M of AgCl(s){\text{AgCl(s)}} after dissolution will give ‘s’ M Ag+{\text{A}}{{\text{g}}^ + } and ‘s’ M Cl{\text{C}}{{\text{l}}^ - }.
We have 0.1M Cl - {\text{C}}{{\text{l}}^{\text{ - }}} ions from NaCl{\text{NaCl}} also so at equilibrium concentration of Cl{\text{C}}{{\text{l}}^ - } is (0.1+s) M
So, at equilibrium we have
[Ag+] = sM[{\text{A}}{{\text{g}}^ + }]{\text{ = sM}}
[Cl - ]=(0.1+s)M{\text{[C}}{{\text{l}}^{\text{ - }}}] = (0.1 + s){\text{M}}
Now, we will set up the solubility product equation for AgCl(s){\text{AgCl(s)}} as follows:
Ksp = [Ag+][Cl - ]{\text{$K_{sp}$ = }}[{\text{A}}{{\text{g}}^ + }]{\text{[C}}{{\text{l}}^{\text{ - }}}]
Here,
Ksp{\text{$K_{sp}$}} = solubility product
Now we have to substitute 1.6×10 - 10{\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}} for solubility product, sM for the concentration of Ag+{\text{A}}{{\text{g}}^ + } ion and 0.1+s)M0.1 + {\text{s}}){\text{M}}.

1.6×10 - 10=(sM)(0.1+s)M{\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}} = ({\text{sM}})(0.1 + {\text{s}}){\text{M}}
Since the solubility of AgCl(s){\text{AgCl(s)}} is very less, we can neglect ‘s’ from 0.1+s
So, the equation will become as follows
1.6×10 - 10=(sM)0.1M{\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{{\text{ - 10}}}} = ({\text{sM}})0.1{\text{M}}
So, s = 1.6×10 - 9M{\text{s = 1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{M}}
Thus, the solubility of AgCl(s){\text{AgCl(s)}} is 1.6×10 - 9M{\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{M}}.

Hence, the correct option is (D) 1.6×10 - 9M{\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{{\text{ - 9}}}}{\text{M}}

Note: Due to the presence of common ion solubility of salt decreases. Here due to the presence of a common ion Cl{\text{C}}{{\text{l}}^ - } the solubility of AgCl(s){\text{AgCl(s)}} decreases. To simplify the calculation we have neglected ’s’ from 0.1+s else we would have ended up with a quadratic equation.