Solveeit Logo

Question

Question: The solubility of \({\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}\) in water at \({25^ \circ }{\t...

The solubility of Ag2Co3{\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3} in water at 25C{25^ \circ }{\text{C}} is 1×1041 \times {10^{ - 4}} mole/litre. What is the solubility in 0.01M0.01{\text{M}} Na2Co3{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3} solution? Assume no hydrolysis of Co32{\text{Co}}_{3 - }^2 ion.
A)6×1066 \times {\text{1}}{{\text{0}}^{ - 6}} mole/litre
B)4×1054 \times {10^{ - 5}} mole/litre
C)105{10^{ - 5}} mole/litre
D)2×1052 \times {10^{ - 5}} mole/litre

Explanation

Solution

We can use the formula of Ksp{{\text{K}}_{{\text{sp}}}} Solubility product which is the product of concentrations of ions with the power raised to the number of ions.
Ksp{{\text{K}}_{{\text{sp}}}} =product of concentration of ions = {\text{product of concentration of ions}}

Complete step by step answer:
Given that the solubility ‘s’ of Ag2Co3{\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3} in water at 25C{25^ \circ }{\text{C}} is 1×1041 \times {10^{ - 4}} mole/litre.
Let the solubility be‘s’ when Ag2Co3{\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}dissociates into following ions in water, then-
Ag2Co32Ag++Co32{\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3} \rightleftharpoons 2{\text{A}}{{\text{g}}^ + } + {\text{Co}}_{3 - }^2 then its solubility product is given by-
Ksp{{\text{K}}_{{\text{sp}}}} =product of concentration of ions = {\text{product of concentration of ions}}
Ksp=[2Ag+]2[Co32]\Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {2{\text{A}}{{\text{g}}^ + }} \right]^2}\left[ {{\text{Co}}_{3 - }^2} \right]
then on putting the values we get-
Ksp=[2s]2[s]=4s3\Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {2{\text{s}}} \right]^2}\left[ {\text{s}} \right] = 4{{\text{s}}^3} --- (i)
We have to find the solubility of Ag2Co3{\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3} solubility in 0.01M0.01{\text{M}} Na2Co3{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3} solution.
Now let the solubility of Ag2Co3{\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3} in 0.01M0.01{\text{M}} Na2Co3{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3} solution be ‘a’. Since there is no hydrolysis ofCo32{\text{Co}}_{3 - }^2 ion so its concentration will be 0.010.01.Now when Ag2Co3{\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3}dissociates into following ions inNa2Co3{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3}, then-
Ag2Co32Ag++Co32{\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3} \rightleftharpoons 2{\text{A}}{{\text{g}}^ + } + {\text{Co}}_{3 - }^2 then its solubility product is given by-
Ksp=[2Ag+]2[Co32]\Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {2{\text{A}}{{\text{g}}^ + }} \right]^2}\left[ {{\text{Co}}_{3 - }^2} \right]
On putting the value of eq. (i), we get-
Ksp=[2a]2[0.01]=4s3\Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {2{\text{a}}} \right]^2}\left[ {0.01} \right] = 4{{\text{s}}^3}
And we know that s =1×1041 \times {10^{ - 4}}(given) , then putting the value of s in above equation we get-
4a2×102=4×(104)3\Rightarrow 4{{\text{a}}^2} \times {10^{ - 2}} = 4 \times {\left( {{{10}^{ - 4}}} \right)^3}
On solving this equation, we get-
4a2×102=4×1012 a2=1012102  \Rightarrow 4{{\text{a}}^2} \times {10^{ - 2}} = 4 \times {10^{ - 12}} \\\ \Rightarrow {{\text{a}}^2} = \dfrac{{{{10}^{ - 12}}}}{{{{10}^{ - 2}}}} \\\
We know that xaxb=xa - b\dfrac{{{{\text{x}}^a}}}{{{{\text{x}}^b}}} = {{\text{x}}^{{\text{a - b}}}} so using this in the above equation, we get-
a2=1012+2=1010\Rightarrow {{\text{a}}^2} = {10^{ - 12 + 2}} = {10^{ - 10}}
Now we will remove the square-root to get the value of a-
a = 1010=105×105=105\Rightarrow {\text{a = }}\sqrt {{{10}^{ - 10}}} = \sqrt {{{10}^{ - 5}} \times {{10}^{ - 5}}} = {10^{ - 5}}
Hence the solubility of Ag2Co3{\text{A}}{{\text{g}}_2}{\text{C}}{{\text{o}}_3} in 0.01M0.01{\text{M}} Na2Co3{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{o}}_3} solution is 105{10^{ - 5}} .

So the correct option is ‘C’.

Note:
There is a difference between solubility and solubility products. Solubility is the concentration of ions of solute in a solvent. Solubility product is the product of the solubility of the solute.