Solveeit Logo

Question

Question: The solubility of $Ca(CN)_2$ in 0.05 M NaCN solution is $x \times 10^{-6}$. The $K_{sp}$ of $Ca(CN)_...

The solubility of Ca(CN)2Ca(CN)_2 in 0.05 M NaCN solution is x×106x \times 10^{-6}. The KspK_{sp} of Ca(CN)2Ca(CN)_2 is 1.0×1081.0 \times 10^{-8}. Find the value x.

Answer

x = 4

Explanation

Solution

For the dissolution of Ca(CN)2\text{Ca(CN)}_2:

Ca(CN)2(s)Ca2+(aq)+2CN(aq)\text{Ca(CN)}_2 (s) \rightarrow \text{Ca}^{2+} (aq) + 2\,\text{CN}^- (aq)

Let the solubility of Ca(CN)2\text{Ca(CN)}_2 be ss mol/L. Then:

[Ca2+]=sand[CN]=0.05+2s0.05(since 2s0.05)[\text{Ca}^{2+}] = s \quad \text{and} \quad [\text{CN}^-] = 0.05 + 2s \approx 0.05 \quad (\text{since } 2s \ll 0.05)

The solubility product is:

Ksp=[Ca2+][CN]2s×(0.05)2K_{sp} = [\text{Ca}^{2+}][\text{CN}^-]^2 \approx s \times (0.05)^2 1.0×108=s×0.00251.0 \times 10^{-8} = s \times 0.0025 s=1.0×1080.0025=4.0×106s = \frac{1.0 \times 10^{-8}}{0.0025} = 4.0 \times 10^{-6}

Thus, x=4x = 4.

In summary:

Assume solubility ss. [CN][\text{CN}^-] is approximately 0.05 M. Set up Ksp=s(0.05)2K_{sp} = s(0.05)^2. Solve for ss to find s=4.0×106s = 4.0 \times 10^{-6}, so x=4x = 4.