Solveeit Logo

Question

Question: The smallest positive integer *n*, for which \(n! < \left( \frac{n + 1}{2} \right)^{n}\) hold is...

The smallest positive integer n, for which n!<(n+12)nn! < \left( \frac{n + 1}{2} \right)^{n} hold is

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

Let P(n) : n!<(n+12)nn! < \left( \frac{n + 1}{2} \right)^{n}

Step I : For n = 2

\Rightarrow 2!<(2+12)22! < \left( \frac{2 + 1}{2} \right)^{2}

\Rightarrow 2<942 < \frac{9}{4}

\Rightarrow 2<2.252 < 2.25 which is true. Therefore, P(2) is true.

Step II : Assume that P(k) is true, then p(k) : k!<(k+12)kk! < \left( \frac{k + 1}{2} \right)^{k}

Step III : For n = k + 1,

P(k+1):(k+1)!<(k+22)k+1P(k + 1):(k + 1)! < \left( \frac{k + 2}{2} \right)^{k + 1}

\Rightarrow k!<(k+12)kk! < \left( \frac{k + 1}{2} \right)^{k}

(k+1)k!<(k+1)k+12k\Rightarrow (k + 1)k! < \frac{(k + 1)^{k + 1}}{2^{k}}

(k+1)!<(k+1)k+12k\Rightarrow (k + 1)! < \frac{(k + 1)^{k + 1}}{2^{k}} …..(i) and

(k+1)k+12k<(k+22)k+1\frac{(k + 1)^{k + 1}}{2^{k}} < \left( \frac{k + 2}{2} \right)^{k + 1} …..(ii)

\Rightarrow (k+2k+1)k+1>2\left( \frac{k + 2}{k + 1} \right)^{k + 1} > 2 \Rightarrow [1+1k+1]k+1>2\left\lbrack 1 + \frac{1}{k + 1} \right\rbrack^{k + 1} > 2

1+(k+1)1k+1+k+1C2(1k+1)2+........>2\Rightarrow 1 + (k + 1)\frac{1}{k + 1} +^{k + 1}C_{2}\left( \frac{1}{k + 1} \right)^{2} + ........ > 2

1+1+k+1C2(1k+1)2+......>2\Rightarrow 1 + 1 +^{k + 1}C_{2}\left( \frac{1}{k + 1} \right)^{2} + ...... > 2

Which is true, hence (ii) is true.

From (i) and (ii), (k+1)!<(k+1)k+12k<(k+22)k+1(k + 1)! < \frac{(k + 1)^{k + 1}}{2^{k}} < \left( \frac{k + 2}{2} \right)^{k + 1}

\Rightarrow (k+1)!<(k+22)k+1(k + 1)! < \left( \frac{k + 2}{2} \right)^{k + 1}

Hence P(k+1)P(k + 1) is true. Hence by the principle of mathematical induction P(n) is true for all nNn \in N

Trick : By check option

(1) For n = 1, 1!<(1+12)11! < \left( \frac{1 + 1}{2} \right)^{1}1<11 < 1 which is wrong

(2) For n = 2, 2!<(32)22! < \left( \frac{3}{2} \right)^{2}2<942 < \frac{9}{4} which is correct

(3) For n = 3, 3!<(3+12)33! < \left( \frac{3 + 1}{2} \right)^{3} ⇒ 6 < 8 which is correct

(4) For n = 4, 4!<(4+12)44! < \left( \frac{4 + 1}{2} \right)^{4}24<(52)424 < \left( \frac{5}{2} \right)^{4}

⇒ 24 < 39.0625 which is correct.

But smallest positive integer n is 2.