Solveeit Logo

Question

Question: The smallest positive angle which satisfies the equation \(\sin\theta = - \frac{3}{2}\), is....

The smallest positive angle which satisfies the equation sinθ=32\sin\theta = - \frac{3}{2}, is.

A

θ=π6,ππ6=5π6\theta = \frac{\pi}{6},\pi - \frac{\pi}{6} = \frac{5\pi}{6}

B

cosθ=12θ=3π4,5π4\cos\theta = - \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{3\pi}{4},\frac{5\pi}{4}

C

tanθ=1θ=π4,5π4\tan\theta = 1 \Rightarrow \theta = \frac{\pi}{4},\frac{5\pi}{4}

D

\therefore

Answer

θ=π6,ππ6=5π6\theta = \frac{\pi}{6},\pi - \frac{\pi}{6} = \frac{5\pi}{6}

Explanation

Solution

tanπx4=ππ/4=4\tan\frac{\pi x}{4} = \frac{\pi}{\pi/4} = 4

f(x)=\therefore f(x) =

sinπx=ππ=1.f(x)=sin(πxn1)+cos(πxn)\left| \sin\pi x \right| = \frac{\pi}{\pi} = 1.f(x) = \sin\left( \frac{\pi x}{n - 1} \right) + \cos\left( \frac{\pi x}{n} \right)

\Rightarrow cos(πxn)=2π(πn)=2n\cos\left( \frac{\pi x}{n} \right) = \frac{2\pi}{\left( \frac{\pi}{n} \right)} = 2n.