Question
Question: The smallest interval \([ a , b ]\) such that \(\int _ { 0 } ^ { 1 } \frac { d x } { \sqrt { 1 + x ^...
The smallest interval [a,b] such that ∫011+x4dx∈[a,b] is given by
A
[21,1]
B
[0,1]
C
[21,2]
D
[43,1]
Answer
[21,1]
Explanation
Solution
Let I=∫011+x4dx
Here, 0≤x≤1⇒1≤(1+x4)≤2
⇒ 1≤1+x4≤2⇒21≤1+x41≤1
⇒ 21≤∫011+x4dx≤1
Hence [21,1] is the smallest interval, such that I∈[21,1]
Note: If m(b−a)≤∫abf(x)dx≤M(b−a).