Solveeit Logo

Question

Question: The smallest integer for which \(\left( \frac{1 + i}{1 - i} \right)^{n} = 1\) is...

The smallest integer for which (1+i1i)n=1\left( \frac{1 + i}{1 - i} \right)^{n} = 1 is

A

n = 8

B

n = 12

C

n = 16

D

None of these

Answer

None of these

Explanation

Solution

Sol. (1+i1i)n=1\left( \frac{1 + i}{1 - i} \right)^{n} = 1

(12+i2)n=(12i2)n\left( \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right)^{n} = \left( \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right)^{n}

(eiπ/4)n=(eiπ/4)n\left( e ^ { i \pi / 4 } \right) ^ { n } = \left( e ^ { - i \pi / 4 } \right) ^ { n } einπ/4=einπ/4e^{in\pi/4} = e^{- in\pi/4}

einπ/2e^{in\pi/2} = 1 ⇒ n = 4k

where k is integer > 0